Skip to main content

Advertisement

Log in

Effect of temperature on the strength and conductivity of a deformation processed Cu-20%Fe composite

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The high temperature (22–600 °C) properties were evaluated for a Cu-20%Fe composite deformation processed from a powder metallurgy compact. The ultimate tensile strengths decreased with increasing temperature but were appreciably better than those of similarly processed Cu at temperatures up to 450 °C. At 600 °C, the strength of Cu-20%Fe was only slightly better than that of Cu as a result of the pronounced coarsening of the Fe filaments. However, at temperatures of 300 and 450 °C, the strength of Cu-20%Fe is about seven and six times greater, respectively, than that of Cu, as compared to about a two fold advantage at room temperature. Therefore, Cu-20%Fe composites made by deformation processing of powder metallurgy compacts have mechanical properties much superior to those of similarly processed Cu at room temperature and at temperatures up to 450 °C. The pronounced decrease in electrical conductivity of deformation processed Cu-20%Fe as compared to Cu is attributed to the appreciable dissolution of Fe into the Cu matrix which occurred during the fabrication of the starting compacts where temperatures up to 675 °C were used. While the powder metallurgy compacts used for the starting material for deformation processing in this study did not lead to a high conductivity composite, the powder metallurgy approach should still be a viable one if processing temperatures can be reduced further to prevent the dissolution of Fe into the Cu matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. P. D. Funkenbusch, T. H. Courtney andD. G. Kubisch,Scripta Metall. 18 (1984) 1099.

    Google Scholar 

  2. P. D. Funkenbusch andT. H. Courtney,ibid. 15 (1981) 1349.

    Google Scholar 

  3. J. C. Malzahn Kampe andT. H. Courtney,ibid. 20 (1986) 285.

    Google Scholar 

  4. J. D. Verhoeven, S. C. Chueh andE. D. Gibson,J. Mater. Sci. 24 (1989) 1748.

    Google Scholar 

  5. Y. S. Go andW. A. Spitzig,ibid., in press.

    Google Scholar 

  6. J. Bevk, W. A. Sunder, G. Dublon andD. C. Cohen, in “In Situ Composites IV”, edited by F. D. Lemkey, H. E. Cline and M. McLean (Elsevier, New York, 1982) p. 121.

    Google Scholar 

  7. W. A. Spitzig, A. R. Pelton andF. C. Laabs,Acta Metall. 35 (1987) 2427.

    Google Scholar 

  8. W. A. Spitzig andP. D. Krotz,ibid. 36 (1988) 1715.

    Google Scholar 

  9. W. F. Hosford Jr,Trans. Met. Soc. AIME 230 (1964) 12.

    Google Scholar 

  10. J. Bevk andK. R. Karasek, in “New Developments and Applications in Composites”, edited by D. Kuhlman-Wilsdorf and W. C. Harrigan Jr (TMS-AIME, Warrendale, PA, 1979) p. 101.

    Google Scholar 

  11. P. D. Krotz, W. A. Spitzig andF. C. Laabs,Mater. Sci. Engnr. A110 (1989) 37.

    Google Scholar 

  12. L. S. Chumbley, H. L. Downing, W. A. Spitzig andJ. D. Verhoeven,ibid. A117 (1989) 59.

    Google Scholar 

  13. J. D. Verhoeven, H. L. Downing, L. S. Chumbley andE. D. Gibson,J. Appl. Phys. 65 (1989) 1293.

    Google Scholar 

  14. C. L. Trybus, W. A. Spitzig, J. D. Verhoeven andF. A. Schmidt, in “Processing and Properties for Powder Metallurgy Composites”, edited by P. Kumar, K. Vendula and A. Ritter (TMS, Warrendale, PA, 1988) p. 97.

    Google Scholar 

  15. J. C. Malzahn Kampe, T. H. Courtney andY. Leng,Acta Metall. 37 (1989) 1735.

    Google Scholar 

  16. T. H. Courtney andJ. C. Malzahn Kampe,ibid. 37 (1989) 1747.

    Google Scholar 

  17. E. E. Underwood, in “Quantitative Stereology” (Addison-Wesley, Reading, MA, 1970) Chs 3 and 4.

    Google Scholar 

  18. R. K. Everett,Scripta Metall. 22 (1988) 1227.

    Google Scholar 

  19. C. L. Trybus andW. A. Spitzig,Acta Metall. 37 (1989) 1971.

    Google Scholar 

  20. K. R. Karasek andJ. Bevk,J. Appl. Phys. 52 (1981) 1370.

    Google Scholar 

  21. A. Boltax,Trans. Met. Soc. AIME 218 (1960) 812.

    Google Scholar 

  22. M. Hansen andK. Anderko, in “Constitution of Binary Alloys”, 2nd Edn (McGraw-Hill, New York, 1958) p. 580.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spitzig, W.A., Chumbley, L.S., Verhoeven, J.D. et al. Effect of temperature on the strength and conductivity of a deformation processed Cu-20%Fe composite. J Mater Sci 27, 2005–2011 (1992). https://doi.org/10.1007/BF01117911

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01117911

Keywords

Navigation