Skip to main content
Log in

Error analysis and improvements of coupled-cluster theory

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

The error in the energy of the traditional coupled-cluster (TCC) approach and of several variants is analyzed in terms of the error δ of the cluster operatorS. A key feature of this analysis is that TCC can be based on an energy functional (asymmetric inS andS ) that is made stationary with respect to variation ofS . The error of TCC scales with the particle numbern, but it is not quadratic in δ. An improved coupled-cluster method (ICC) is presented that is the next step in a hierarchy from TCC to an exact variational theory. An alternative hierarchy is possible that leads to the extended coupled-cluster (ECC) method of Arponen. Variational (VCC) and unitary (UCC) coupled cluster theories and their stationary conditions and errors are analyzed along similar lines and practicable VCC or UCC approaches are presented. An infinite summation of certain terms in the VCC expectation value is shown to lead to a coupled-pair functional of the type proposed by Ahlrichs. The various CC schemes discussed here are compared on the CC-D, CC-SD and CC-SDT levels and beyond this. Special aspects referring to properties are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Coester F (1958) Nucl Phys 7:421

    Google Scholar 

  2. Coester F, Kümmel H (1960) Nucl Phys 17:477

    Google Scholar 

  3. Kümmel H (1961) Nucl Phys 22:177

    Google Scholar 

  4. Kümmel H, Lührmann H (1972) Nucl Phys A 191:525; A 194:225

    Google Scholar 

  5. Bishop RF, Kümmel H (1987) Physics Today 40:52

    Google Scholar 

  6. Čižek J (1966) J Chem Phys 45:4256

    Google Scholar 

  7. Čižek J (1969) Adv Chem Phys 14:35

    Google Scholar 

  8. Paldus J, Čižek J, Shavitt I (1972) Phys Rev A 5:50

    Google Scholar 

  9. Lindgren I (1974) J Phys B 7:2441; (1978) Int J Quantum Chem Symp 12:33

    Google Scholar 

  10. Lindgren I, Morrison J Atomic many-body theory, Springer, Berlin Heidelberg New York, 1982

    Google Scholar 

  11. Lindgren I, Salomonsen S (1980) Phys Scr 21:335

    Google Scholar 

  12. Taylor PR, Backsay GB, Hurley AC, Hush NS (1978) J Chem Phys 69:1971

    Google Scholar 

  13. Bartlett RJ, Purvis GD (1978) Int J Quantum Chem 14:561; (1980) Phys Scr 21:251

    Google Scholar 

  14. Bartlett RJ (1981) Ann Rev Phys Chem 32:359

    Google Scholar 

  15. Purvis GD, Bartlett RJ (1982) J Chem Phys 76:1910

    Google Scholar 

  16. Lee YS, Bartlett RJ (1984) J Chem Phys 80:4371

    Google Scholar 

  17. Laidig W, Bartlett RJ (1984) Chem Phys Lett 104:424

    Google Scholar 

  18. Lee YS, Kucharski SA, Bartlett RJ (1984) J Chem Phys 81:5906; (1985) 82:5761

    Google Scholar 

  19. Urban M, Noga J, Cole SJ, Bartlett RJ (1985) J Chem Phys 83:4041

    Google Scholar 

  20. Cole SJ, Bartlett RJ (1987) J Chem Phys 86:7041; (1987) 86:873

    Google Scholar 

  21. Noga J, Bartlett RJ, Urban M (1987) Chem Phys Lett 134:128

    Google Scholar 

  22. Noga J, Bartlett RJ (1987) J Chem Phys 86:7024; (1988) 89:3401

    Google Scholar 

  23. Sosa C, Noga J, Bartlett RJ (1988) J Chem Phys 88:5974

    Google Scholar 

  24. Bartlett RJ, Noga J (1988) Chem Phys Lett 150:29

    Google Scholar 

  25. Geertsen J, Rittby M, Bartlett RJ (1989) Chem Phys Lett 164:57

    Google Scholar 

  26. Watts JD, Trucks GW, Bartlett RJ (1989) Chem Phys Lett 164:502

    Google Scholar 

  27. Bartlett RJ, Watts JD, Kucharski SA, Noga J (1990) Chem Phys Lett 165:519; (1990) 167:609

    Google Scholar 

  28. Pople JA, Krishnan R, Schlegel HB, Binkley JS (1978) Int J Quantum Chem 14:545

    Google Scholar 

  29. Paldus J (1977) J Chem Phys 67:303

    Google Scholar 

  30. Jankowski K, Paldus J (1980) Int J Quantum Chem 18:1243; (1981) Phys Rev A 24:2316, 2330

    Google Scholar 

  31. Paldus J, Boyle MJ (1982) Int J Quantum Chem 22:1281

    Google Scholar 

  32. Paldus J, Čižek J, Takahashi M (1984) Phys Rev A 30:2193

    Google Scholar 

  33. Kvasnička V, Laurinc V, Biskupič S (1982) Phys Rep 90:159

    Google Scholar 

  34. Pal S, Prasad MD, Mukherjee D (1983) Theor Chim Acta 62:523

    Google Scholar 

  35. Szalewicz K, Zabolitzky J, Jeziorski B, Monkhorst H (1984) J Chem Phys 81:2723

    Google Scholar 

  36. Scuseria G, Sheiner A, Lee TJ, Rice JE, Schaefer III HF (1987) J Chem Phys 86:2881

    Google Scholar 

  37. Adamowicz L (1989) J Comput Chem 10:928

    Google Scholar 

  38. Bartlett RJ, Dykstra CE, Paldus J In: Dykstra CE (ed) Advanced theories and computational approaches to the electronic structure of molecules. Reidel, Dordrecht, 1984

    Google Scholar 

  39. Hoffmann MR, Schaefer III HF (1986) Adv Quantum Chem 18:207

    Google Scholar 

  40. Kucharski SA, Bartlett RJ (1986) Adv Quantum Chem 18:281

    Google Scholar 

  41. Urban M, Kellö V, Černušák I, Noga J In: Wilson S (ed) Methods in computational chemistry, Vol. 1, New York, Plenum, 1987

    Google Scholar 

  42. Jankowski K ibid In:

    Google Scholar 

  43. Bartlett RJ (1989) J Phys Chem 93:1697

    Google Scholar 

  44. Meyer W (1973) J Chem Phys 58:1017

    Google Scholar 

  45. Ahlrichs R, Lischka H, Staemmler V, Kutzelnigg W (1975) J Chem Phys 62:1225

    Google Scholar 

  46. Kutzelnigg W In: Schaefer III HF (ed) Modern theoretical chemistry, Vol. 3a, Plenum, New York, 1977

    Google Scholar 

  47. Ahlrichs R (1979) Comp Phys Commun 17:31

    Google Scholar 

  48. Čársky P, Urban M ‘Ab initio calculations’, Lecture notes in chemistry, Vol. 16, Springer, Berlin Heidelberg New York, 1960

    Google Scholar 

  49. Primas H In: Sinanoglu O (ed) Modern quantum chemistry, Vol. 2, p. 45, Academic Press, New York, 1965

    Google Scholar 

  50. Hubbard J (1957) Proc Roy Soc London A 240:539; (1958) A 243:336; (1958) A 244:199; Hugenholtz NM (1957) Physica 23:481

    Google Scholar 

  51. Goldstone J (1957) Proc Roy Soc London A 239:267

    Google Scholar 

  52. Kutzelnigg W, Koch S (1983) J Chem Phys 79:4315

    Google Scholar 

  53. Koch S, Kutzelnigg W (1981) Theor Chim Acta 59:387

    Google Scholar 

  54. Lee TJ, Rendell AP, Taylor PR (1990) J Phys Chem 94:5463

    Google Scholar 

  55. Handy NC, Harrison RJ (1983) Chem Phys Lett 95:386; Bauschlicher CW, Taylor PR (1986) J Chem Phys 85:2779

    Google Scholar 

  56. Kutzelnigg W (1979) Chem Phys Lett 64:383; (1980) Int J Quantum Chem 18:3

    Google Scholar 

  57. Arponen J (1983) Ann Phys (NY) 151:311; Arponen DS, Bishop RF, Pajanne E (1987) Phys Rev A 36:2519, 2539; Bishop RF, Arponen J, Pajanne E In: Mukherjee D (ed) Aspects of many-body effects in molecules and extended systems, Lecture notes in chemistry, Vol. 50, p. 79, Springer, Berlin Heidelberg New York, 1989

    Google Scholar 

  58. Hurley AC Electron correlation in small molecules. New York, Academic Press, 1976

    Google Scholar 

  59. Kutzelnigg W (1975) Chem Phys Lett 35:283

    Google Scholar 

  60. Bartlett RJ, Shavitt I (1977) Chem Phys Lett 50:190; Bartlett RJ, Shavitt I, Purvis GD (1979) J Chem Phys 71:281

    Google Scholar 

  61. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968; (1989) 90:4635

    Google Scholar 

  62. Scuseria G, Schaefer III HF (1989) J Chem Phys 90:3700

    Google Scholar 

  63. Paldus J, Čižek J, Jeziorski B (1989) J Chem Phys 90:4356

    Google Scholar 

  64. Handy C, Knowles PJ, Somasundran K (1985) Theor Chim Acta 68:87

    Google Scholar 

  65. Gill PMW, Pople JA, Radom L, Nobes RH (1988) J Chem Phys 89:7307

    Google Scholar 

  66. Bartlett RJ, Noga J (1988) Chem Phys Lett 150:29

    Google Scholar 

  67. Bartlett RJ, Kucharski SA, Noga J (1989) Chem Phys Lett 155:133

    Google Scholar 

  68. Watts JD, Trucks GW, Bartlett RJ (1989) Chem Phys Lett 157:359

    Google Scholar 

  69. Reitz H, Kutzelnigg W (1979) Chem Phys Lett 66:111

    Google Scholar 

  70. Kutzelnigg W (1981) Chem Phys Lett 83:156; (1982) J Chem Phys 77:3081; (1984) 80:822; (1985) 82:4166

    Google Scholar 

  71. Yaris RJ (1964) J Chem Phys 41:2419; (1965) 42:3019

    Google Scholar 

  72. Westhaus P, Bradford EG, Hall D (1975) J Chem Phys 62:1607; Westhaus P (1980) J Chem Phys 73:5197

    Google Scholar 

  73. Baker H, Robb MA (1983) Mol Phys 50:1077

    Google Scholar 

  74. Tanaka K, Terashima H (1984) Chem Phys Lett 106:588

    Google Scholar 

  75. Hoffmann MR, Simons J (1988) J Chem Phys 88:993; (1987) Chem Phys Lett 142:451

    Google Scholar 

  76. Pal S, Prasad MD, Mukherjee D (1983) Theor Chim Acta 62:523; (1984) 66:311

    Google Scholar 

  77. Kutzelnigg W In: Kümmel H, Ristig ML (eds) Recent progress in many-body theories, Lecture notes in physics, Vol. 198, Springer, Berlin Heidelberg New York, 1984

    Google Scholar 

  78. Ahlrichs R, Scharf P, Ehrhard C (1985) J Chem Phys 82:890; Ahlrichs R, Scharf P In: Lawley KP (ed) Ab initio methods in quantum chemistry I, New York, Wiley, 1987

    Google Scholar 

  79. Kelly HP, Sessler AM (1963) Phys Rev 132:2091; Kelly HP (1964) Phys Rev 134A:1450

    Google Scholar 

  80. Kutzelnigg W (1973) Top Curr Chem 41:31

    Google Scholar 

  81. Sinanoglu O (1962) J Chem Phys 36:706, 3198

    Google Scholar 

  82. Gdanitz RJ, Ahlrichs R (1988) Chem Phys Lett 143:413

    Google Scholar 

  83. Pulay P (1983) J Mol Struct 103:57; (1983) Int J Quant Chem Symp 17:257

    Google Scholar 

  84. Chiles RA, Dykstra CE (1981) Chem Phys Lett 80:69; Bachrach SM, Chiles RA, Dykstra CE (1981) J Chem Phys 75:2270; Jasien PG, Dykstra CE (1983) Int J Quantum Chem Symp 17:289

    Google Scholar 

  85. Sadlej A (1983) Int J Quant Chem 23:147; (1982) 75:320

    Google Scholar 

  86. Kutzelnigg W (1989) J Mol Struct Theochem 202:11

    Google Scholar 

  87. Epstein ST The variation method in quantum chemistry. Academic Press, New York 1974

    Google Scholar 

  88. Monkhorst HJ (1977) Int J Quantum Chem 11:421; Dalgaard E, Monkhorst H (1983) Phys Rev A 28:1217

    Google Scholar 

  89. Mukherjee D, Pal S (1989) Adv Quantum Chem 20:292

    Google Scholar 

  90. Kutzelnigg W, Mukherjee D, Koch S (1987) J Chem Phys 87:5902; Mukherjee D, Kutzelnigg W, Koch S (1987) J Chem Phys 87:5911

    Google Scholar 

  91. Anderrson K, Malmquist DÅ, Roos BO, Sadlej AJ, Wolinski K (1990) J Phys Chem 94:5483

    Google Scholar 

  92. Landscheid U, Kutzelnigg W (1988) Coll Czech Chem Comm 53:1953

    Google Scholar 

  93. Laaksonen L, Müller-Plathe F, Diercksen GHF (1988) J Chem Phys 89:4903

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutzelnigg, W. Error analysis and improvements of coupled-cluster theory. Theoret. Chim. Acta 80, 349–386 (1991). https://doi.org/10.1007/BF01117418

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01117418

Key words

Navigation