Skip to main content
Log in

In vitro studies on the subcellular location of glucosidase I and glucosidase II in dog pancreas

  • Short Papers
  • Published:
Bioscience Reports

Abstract

When programmed with yeast prepro-α-factor mRNA, the heterologous reticulocyte/dog pancreas translation system synthesizes two pheromone related polypeptides, a cytosolically located primary translation product (pp-α-Fcyt, 21 kDa) and a membrane-specific and multiply glycosylated e-factor precursor (pp-α-F3, 27.5 kDa). Glycosylation of the membrane specific pp-α-F3 species is competitively inhibited by synthetic peptides containing the consensus sequence Asn-Xaa-Thr as indicated by a shift of its molecular mass from 27.5 kDa to about 19.5 kDa (pp-α-F0) , whereas the primary translation product pp-α-Fcyt is not affected. Likewise, only the glycosylated pp-α-F3 structure is digested by Endo H yielding a polypeptide with a molecular mass between PP-α-F0 and pp-α-Fcyt. These observations strongly suggest that the primary translation product is proteolytically processed during/on its translocation into the lumen of the microsomal vesicles. We believe that this proteolytic processing is due to the cleavage of a signal sequence from the pp-α-Fcyt species, although this interpretation contradicts previous data from other groups. The distinct effect exerted by various glycosidase inhibitors (e.g. 1-deoxynojirimycin, N-methyl-dNM, 1-deoxymannojirimycin) on the electrophoretic mobility of the pp-α-F3 polypeptide indicates that its oligosaccharide chains are processed to presumbly Man9-GlcNAc2 structures under thein vitro conditions of translation. This oligosaccharide processing is most likely to involve the action of glucosidase I and glucosidase II as follows from the specificity of the glycosidase inhibitors applied and the differences of the molecular mass observed in their presence. In addition, several arguments suggest that both trimming enzymes are located in the lumen of the microsomal vesicles derived from endoplasmic reticulum membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

dNM:

1-deoxynojirimycin

N-Me-dNM:

N-methyl-dNM

dMM:

1-deoxymannojirimycin

CCCP:

carbonylcyanide m-chlorophenyl hydrazone

References

  1. Walter, P., Gilmore, R., and Blobel, G. (1984).Cell 38:5–8.

    Google Scholar 

  2. Walter, P. and Blobel, G. (1980).Proc. Natl. Acad. Sci. USA 77:7112–7116.

    Google Scholar 

  3. Walter, P. and Blobel, G. (1982).Nature (Lond.) 299:691–698.

    Google Scholar 

  4. Gilmore, R., Walter, P., and Blobel, G. (1982).J. Cell Biol. 95:470–477.

    Google Scholar 

  5. Walter, P. and Blobel, G. (1981).J. Cell Biol. 91:557–561.

    Google Scholar 

  6. Evans, E. A., Gilmore, R., and Blobel, G. (1986).Proc. Natl. Acad. Sci. USA 83: 581–585.

    Google Scholar 

  7. Lau, J. T. Y., Welply, J. K., Shenbagamurthi, P., Naider, F., and Lennarz, W. J. (1983).J. Biol. Chem. 258:15255–15260.

    Google Scholar 

  8. Tillmann, U., Günther, R., Schweden, J., and Bause, E. (1986) unpublished results. Submitted toEur. J. Biol.

  9. Waters, M. G. and Blobel, G. (1986).J. Cell Biol. 102:1543–1550.

    Google Scholar 

  10. Rothblatt, J. A. and Meyer, D. I. (1986)Cell 44:619–628.

    Google Scholar 

  11. Laemmli, U. K. (1970).Nature (Lond.) 227:680–685.

    Google Scholar 

  12. Erickson, B. W. and Merrifield, R. B. (1976). InThe Proteins (Neurath H. and Hill, R. L. Eds.), Vol. 2, pp. 255–562, Academic Press, London and New York.

    Google Scholar 

  13. Hettkamp, H., Legler, G., and Bause, E. (1984)Eur. J. Biochem. 142:85–90.

    Google Scholar 

  14. Legler, G. and Jülich, E. (1984).Carbohydrate Res. 128:61–72.

    Google Scholar 

  15. Kurjan, J. and Herskowitz, J. (1982).Cell 30:933–943.

    Google Scholar 

  16. Bause, E. and Legler, G. (1981).Biochem. J. 195:639–644.

    Google Scholar 

  17. Bause, E. (1983).Biochem. J. 209:331–336.

    Google Scholar 

  18. Julius, D., Schekman, R., and Torner, J. (1984).Cell 36:309–318.

    Google Scholar 

  19. Lalégerie, P., Legler, G., and Yon, J. (1982).Biochemie (Paris) 64:977–1000.

    Google Scholar 

  20. Fuhrmann, U., Bause, E., and Ploegh, H. (1985).Biochim. Biophys. Acta 825:95–110.

    Google Scholar 

  21. Schweden, J., Borgmann, C., Legler, G., and Bause, E. (1986).Arch. Biochem. Biophys., in press.

  22. Lucocq, J. M., Brada, D., and Roth, J. (1986).J. Cell Biol., in press.

  23. Hubbard, S. C. and Ivatt, R. (1981).Annu. Rev. Biochem. 50:555–583.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bause, E., Günther, R., Schweden, J. et al. In vitro studies on the subcellular location of glucosidase I and glucosidase II in dog pancreas. Biosci Rep 6, 827–834 (1986). https://doi.org/10.1007/BF01117106

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01117106

Key Words

Navigation