Advertisement

African Archaeological Review

, Volume 1, Issue 1, pp 33–56 | Cite as

Recent carbon isotope research and its implications for African archaeology

  • Nikolaas J. van der Merwe
  • J. C. Vogel
Article

Abstract

A number of new developments in the carbon isotope field are reviewed, some of these having immediate and others potential application to African archaeology. Mass spectrometric analysis of13C/12C ratios in human and animal bone collagen makes it possible to reconstruct prehistoric foodwebs and to draw conclusions about dietary adaptations. Alternatively, where dietary behaviour is known, analysis of the bone of certain animal species allows for reconstruction of past environments. Ratio mass spectrometers are widely available in research institutions, and provided that the proper techniques for sample preparation are followed, this method of analysis should be of immediate use to most Africanists. It is already making an impact on African archaeology.

The development of accelerator-based or high energy mass spectrometry (HEMS) radiocarbon dating provides the potential for extending the method back to 100,000 years, particularly in the case of bone samples. Practical applications, however, are still a few years off. In the immediate future HEMS dating is likely to be applied to small samples of ages less than 50,000 years. In competition with HEMS is the use of mini-counters for conventional radiocarbon dating of small samples. This procedure is available in a few laboratories with more under development. Dating of small samples has potential applications in many areas, specifically in the direct age measurement of critical specimens as opposed to the dating of associated materials.

Keywords

Carbon Isotope Mass Spectrometric Analysis Dietary Behaviour Bone Collagen Animal Bone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Certaines innovations dans le domaine des isotopes de carbone sont révisées dans le présent article, celles-ci pouvant être appliquées à l'archéologie africaine ou y présentant des possibilités d'application.

Des analyses au spectromètre de masse du rapport13C/12C dans le collagène osseux humain et animal permettent de reconstruire des réseaux alimentaires préhistoriques et de tirer des conclusions quant aux adaptations diététiques. D'autre part, si le comportement en alimentation est connu, l'analyse des os de certaines espèces animales permet la reconstruction d'anciens milieux. Un bon nombre d'instituts de recherche possèdent déjà des spectromètres de masse, et pourvu que les méthodes appropriées de préparation d'échantillons soient suivies, la plupart des africanistes pourraient avoir recours immédiat à cette méthode d'analyse qui fait déjà sa marque en archéologie africaine.

La mise au point de la datation au carbone 14 par accélérateur ou par spectrométrie de masse à haute énergie (HEMS) permettra peut-être un élargissement du champs actuel reculant jusqu'à 100,000 ans, en particulier dans le cas d'échantillons d'os. Il faudra encore quelques années cependant avant qu'on y trouve une application pratique. Pour le futur immédiat, la datation par HEMS sera sans doute appliquée à de petits échantillons datant de moins de 50,000 ans. Les mini-compteurs, en compétition avec la HEMS, permettent la datation conventionnelle de petits échantillons par le radiocarbone. Cette méthode est praticable dans quelques laboratoires et d'autres installations sont en voie de construction. La datation de petits échantillons peut être appliquée à plusieurs domaines, en particulier à la datation direct de spécimens critiques par opposition à la datation de matériaux associés.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bender, M. M., Baerreis, D. A., and Steventon, R. L. 1981. Further light on carbon isotopes and Hopewell agriculture.American Antiquity 46:346–53.Google Scholar
  2. Bennett, C. L., Beukens, R. P., Clover, M. R., Gove, H. E., Liebert, R. B., Litherland, A. E., Purser, K. H., and Sondheim, W. E. 1977. Radiocarbon dating using electrostatic accelerators: negative ions provide the key.Science 198:508–10.Google Scholar
  3. Butzer, K. W., and Helgren, D. M. 1972. Late cenozoic evolution of the Cape Coast between Knysna and Cape St. Francis, S.A.Quaternary Research, 2 (2):143–69.Google Scholar
  4. Calvin, M., and Bassham, J. A. 1962.The photosynthesis of carbon compounds. New York: W. A. Benjamin.Google Scholar
  5. Calvin, M., and Benson, A. S. 1948. The path of carbon in photosynthesis.Science 107:476–80.Google Scholar
  6. Chisholm, B. S., Nelson, D. E., and Schwarcz, H. P. 1982. Stable-carbon isotope ratios as a measure of marine versus terrestrial protein in ancient diets.Science 216:1131–32.Google Scholar
  7. Craig, H. 1953. The geochemistry of the stable carbon isotopes.Geochimica et Cosmochimica Acta 3:53–92.Google Scholar
  8. Craig, H. 1957. Isotope standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide.Geochimica et Cosmochimica Acta 12:133–49.Google Scholar
  9. Deevey, E. S., Gralenski, L. J., and Hoffren, V. 1959. Yale natural radiocarbon measurements IV.Radiocarbon 1:144–72.Google Scholar
  10. Degens, E. T., Guillard, R. R. L., Sackett, W. M., and Hellebust, J. A. 1968. Metabolic fractionation of carbon isotopes in marine plankton-I. Temperature and respiration experiments.Deep-Sea Research 15:1–9.Google Scholar
  11. De Niro, M. J., and Epstein, S. 1978a. Influence of diet on the distribution of carbon isotopes in animals.Geochimica et Cosmochimica Acta 42:495–506.Google Scholar
  12. De Niro, M. J., and Epstein, S. 1978b. Carbon isotopic evidence for different feeding patterns in two hyrax species occupying the same habitat.Science 201:906–8.Google Scholar
  13. De Niro, M. J., and Epstein, S. 1981. Influence of diet on the distribution of nitrogen isotopes in animals.Geochimica et Cosmochimica Acta 45:341–51.Google Scholar
  14. Ellis, R. P., Vogel, J. C. and Fuls, A. 1980. Photosynthetic pathways and the geographical distribution of grasses in South West Africa/Namibia.S. Afr. J. Sci. 76:307–14.Google Scholar
  15. Emrich, K., Ehhalt, D. H., and Vogel, J. C. 1970. Carbon isotope fractionation during the precipitation of calcium carbonate.Earth and Planet Sci. Lett. 8:363–71.Google Scholar
  16. Ericson, J. E., Sullivan, C. H. and Boaz, N. T. 1981. Diets of Pliocene mammals from Omo, Ethiopia, deduced from carbon isotopic ratios in tooth apatite.Palaeogeography, Palaeoclimatology, and Palaeoecology 36:69–73.Google Scholar
  17. Hassan, A. A. 1975.Geochemical and mineralogical studies on bone material and their implications for radiocarbon dating. Unpublished Ph.D. Thesis, Southern Methodist University.Google Scholar
  18. Hassan, A. A., Termine, J. D. and Haynes, C. V. 1977. Mineralogical studies on bone apatite and their implications for radiocarbon dating.Radiocarbon 19:364–74.Google Scholar
  19. Hatch, M. D. and Slack, C. R. 1966. Photosynthesis by sugarcane leaves. A new carboxylation reaction and the pathway of sugar formation.Biochemical Journal 101:103–11.Google Scholar
  20. Hatch, M. D., Slack, C. R. and Johnson, H. S. 1967. Further studies on a new pathway of photosynthetic carbon dioxide fixation in sugarcane, and its occurrence in other species.Biochemical Journal 102:417–22.Google Scholar
  21. Haynes, C. V. 1968. Radiocarbon: analysis of inorganic carbon of fossil bone and enamel.Science 161:687–88.Google Scholar
  22. Hedges, R.E.M. 1981. Radiocarbon dating with an accelerator: review and preview.Archaeometry 23 (1):3–18.Google Scholar
  23. Keith, M. L., Anderson, G. L. and Eichler, R. 1964. Carbon and oxygen isotopic composition of mollusc shells from marine and fresh water environments.Geochimica et Cosmochimica Acta 28:1757–86.Google Scholar
  24. Kortshack, H. P., Hart, C. E. and Burr, C. O. 1965. Carbon dioxide fixation in sugarcane leaves.Plant Physiology 40:209–13.Google Scholar
  25. Land, L. S., Lundelius, E. L. and Valastro, S. 1980. Isotopic ecology of deer bones.Palaeogeography, Palaeoclimatology, Palaeoecology 32:143–51.Google Scholar
  26. Le Geros, R. Z., Le Geros, J. P., Trautz, O. R. and Kline, E. 1968. Crystallographic studies on the CO3 substitution in the apatite structure.Bull. Soc. Chim. France, special no., pp. 1712–18.Google Scholar
  27. Le Geros, R. Z., Trautz, O. R., Kline, E., Le Geros, J. P. 1969. Two types of carbonate substitutions in the apatite structure.Experimentia 15:5–7.Google Scholar
  28. Libby, W. F. 1955.Radiocarbon dating. Chicago: University of Chicago Press.Google Scholar
  29. Livingstone, D. A. and Clayton, W. D. 1980. An altitudinal cline in tropical African grass floras and its palaeoecological significance.Quaternary Research 13:392–402.Google Scholar
  30. Medina, E. and Minchin, P. 1980. Stratification of δ13C values of leaves in Amazonian rain forests.Oecologia 45:377–78.Google Scholar
  31. Mooney, H. A., Troughton, J. H. and Berry, J. A. 1977. Carbon isotype ratio measurements of succulent plants in southern Africa.Oecologia 30:295–305.Google Scholar
  32. Moore, P. D. 1982. Evolution of photosynthetic pathways in flowering plants.Nature 295:647–48.Google Scholar
  33. Muller, R. A. 1977. Radioisotope dating with a cyclotron.Science 196:489–94.Google Scholar
  34. Muller, R. A. 1979. Radioisotope dating with accelerators.Physics Today 32:23–30.Google Scholar
  35. Nelson, D. E., Korteling, R. G. and Stott, W. R. 1977. Carbon-14: direct detection at natural concentrations.Science 198:507–8.Google Scholar
  36. Osmond, C. B. 1978. Crassulacean acid metabolism; a curiosity in context.Ann. Rev. of Plant Physiol. 29:379–414.Google Scholar
  37. Park, R. and Epstein, S. 1960. Carbon isotope fractionation during photosynthesis.Geochimica et Cosmochimica Acta 21:110–26.Google Scholar
  38. Park, R., and Epstein, S. 1961. Metabolic fractionation of13C and12C in plants.Plant Physiology 36:133–38.Google Scholar
  39. Parker, P. L. 1964. The biochemistry of the stable isotopes of carbon in a marine bay.Geochimica et Cosmochimica Acta 28:1155–64.Google Scholar
  40. Parkington, J. E. 1980. Time and place: some observations on spatial and temporal patterning in the Later Stone Age sequence in Southern Africa. (With 14 review comments and reply.)South African Archaeological Bulletin 35:73–112.Google Scholar
  41. Rightmire, G. P. and van der Merwe, N. J. 1976. Two burials from Phalaborwa and the association of race and culture in the Iron Age of southern Africa.South African Archaeological Bulletin 31:147–52.Google Scholar
  42. Robyns, W. 1955.Flore des Spermatophytes du Parc National Albert. III. Monocotylées. Institut des Parc Nationaux du Congo Belge, Bruxelles.Google Scholar
  43. Sackett, W. M., Eckelmann, W. R., Bender, M. C. and Be, A. W. H. 1965. Temperature dependence of carbon isotope composition in marine plankton and sediments.Science 148:235–37.Google Scholar
  44. Schoeninger, M. J. and de Niro, M. J. 1982. Carbon isotope ratios of apatite from fossil bone cannot be used to reconstruct diets of animals.Nature 297:577–78.Google Scholar
  45. Silberbauer, F. B. 1979.Stable carbon isotopes and prehistoric diets in the eastern Cape Province, South Africa. Unpublished M.A. Thesis, University of Cape Town.Google Scholar
  46. Sullivan, C. H. and Krueger, H. W. 1981. Carbon isotope analysis of separate chemical phases in modern and fossil bone.Nature 292:333–35.Google Scholar
  47. Tamers, M. A. and Pearson, F. J. 1965. Validity of radiocarbon dates on bone.Nature 208:1053–55.Google Scholar
  48. Tieszen, L. L., Senyimba, M. M., Imbamba, S. K. and Troughton, J. H. 1979. The distribution of C3 and C4 grasses and carbon isotope discrimination along an altitudinal and moisture gradient in Kenya.Oecologia 37:337–50.Google Scholar
  49. Tieszen, L. L., Hein, D., Qvortrup, S. A., Troughton, J. H., Imbamba, S. K. 1979. Use of δ13C values to determine vegetation selectivity in East African ungulates.Oecologia 37:351–59.Google Scholar
  50. Tieszen, L. L. and Imbamba, S. K. 1980. Photosynthetic systems, carbon isotope discrimination and herbivore selectivity in Kenya.Afr. J. Ecol. 18:237–42.Google Scholar
  51. van der Merwe, N. J. 1969.The Carbon-14 dating of iron. Chicago: University of Chicago Press.Google Scholar
  52. van der Merwe, N. J. and Avery, D. H. 1982. Pathways to steel.American Scientist 70:146–55.Google Scholar
  53. van der Merwe, N. J. and Vogel, J. C. 1978.13C content of human collagen as a measure of prehistoric diet in Woodland North America.Nature 276:815–16.Google Scholar
  54. van der Merwe, N. J., Roosevelt, A. C. and Vogel, J. C. 1981. Isotopic evidence for prehistoric subsistence change at Parmana, Venezuela.Nature 292:536–38.Google Scholar
  55. Vogel, J. C. 1978a. Isotopic assessment of the dietary habits of ungulates.South African Journal of Science 74:298–301.Google Scholar
  56. Vogel, J. C. 1978b. Recycling of carbon in a forest environment.Oecologia Plantarum 13:89–94.Google Scholar
  57. Vogel, J. C. 1982a. Koolstofisotoopsamestelling van plant proteïene.Die Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie 1:7–8.Google Scholar
  58. Vogel, J. C. 1982b. Isotopic evidence for the past climates and vegetation of South Africa.Botalia, in press.Google Scholar
  59. Vogel, J. C., Fuls, A. and Ellis, R. P. 1978. The geographical distribution of Kranz species in southern Africa.South African Journal of Science 75: 209–15.Google Scholar
  60. Vogel, J. C. and van der Merwe, N. J. 1977. Isotopic evidence for early maize cultivation in New York State.American Antiquity 42:238–42.Google Scholar
  61. Vogel, J. C. and Waterbolk, H. T. 1967. Groningen Radiocarbon Dates VII.Radiocarbon 9:107–55.Google Scholar
  62. Vogel, J. C. and Waterbolk, H. T. 1972. Groningen Radiocarbon Dates X.Radiocarbon 14:6–110.Google Scholar
  63. von Schirnding, Y., van der Merwe, N. J. and Vogel, J. C. 1982. Influence of diet and age on carbon isotope ratios in ostrich eggshell.Archaeometry 24:3–20.Google Scholar
  64. Winter, K., Troughton, J. H. and Card, K. A. 1976. δ13C values of grass species collected in the northern Sahara desert.Oecologia 25:115–23.Google Scholar

Copyright information

© Cambridge University Press 1983

Authors and Affiliations

  • Nikolaas J. van der Merwe
  • J. C. Vogel

There are no affiliations available

Personalised recommendations