Skip to main content

Advertisement

Log in

A unified theory for the development of cancer

  • Review Hypothesis
  • Published:
Bioscience Reports

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Doll, R. and Peto, R. (1981). The causes of cancer: Quantitative estimates of avoidable risks of cancer in the United States today.J. Natl. Cancer Inst. 66:1193–1308.

    Google Scholar 

  2. Varmus, H. (1981). The molecular genetics of cellular oncogenes.Ann. Rev. Genetics 18:553–612.

    Google Scholar 

  3. Marshall, C. J. (1985). Human oncogenes. In:RNA Tumor Viruses. Molecular Biology of Tumor Viruses, 2nd edn. (R. A. Weiss, N. M. Teich, H. E. Varmus and J. Cofin, Eds.), Cold Spring Harbor Lab., New York. Vol. 22, pp. 486–558.

    Google Scholar 

  4. Doerfler, W. (1983). DNA methylation and gene activity.Ann. Rev. Biochem. 52:93–124.

    PubMed  Google Scholar 

  5. Nyce, J., Weinhouse, S. and Magee, P. N. (1983). 5-Methylcytosine depletion during tumour development: An extension of the miscoding concept.Br. J. Cancer 48:463–475.

    PubMed  Google Scholar 

  6. Boveri, T. (1929).On the Problem of the Origin of Malignant Tumors. Baltimore: Williams and Wilkins (translated by M. O. Boveri).

    Google Scholar 

  7. Foulds, L. (1954). The experimental study of tumor progression. A review.Cancer Res. 14:327–339.

    PubMed  Google Scholar 

  8. Huebner, R. M. and Todaro, G. J. (1969). Oncogenes of RNA tumor viruses as determinants of cancer.Proc. Natl. Acad. Sci. USA 64:1087–1094.

    PubMed  Google Scholar 

  9. Temin, H. M. (1971). The protovirus hypothesis: speculations on the significance of RNA-directed DNA synthesis for normal development and for carcinogenesis.J. Natl. Cancer Inst. 46:3–7.

    PubMed  Google Scholar 

  10. Comings, D. E. (1973). A general theory of carcinogenesis.Proc. Natl. Acad. Sci. USA 70:2324–2328.

    Google Scholar 

  11. Cairns, J. (1981). The origins of human cancers.Nature 289:353–357.

    PubMed  Google Scholar 

  12. Weinstein, I. B., Gattoni-Celli, S., Kirschmeier, P., Lambert, M., Hsiao, W., Backer, J. and Jeffrey, A. (1984). Multistage carcinogenesis involves multiple genes and multiple mechanisms. In:Cancer Cells (A. J. Levine, G. F. Vande Woude, W. C. Topp and J. D. Watson, Eds.), Cold Spring Harbor Laboratory, New York, USA. Vol. 1, pp. 229–237.

    Google Scholar 

  13. Spandidos, D. A. and Wilkie, N. M. (1984). Expression of exogenous DNA in mammalian cells. In:In Vitro Transcription and Translation—A Practical Approach (B. D. Hames and S. J. Higgins, Eds.), IRL Press, Oxford, UK, pp. 1–48.

    Google Scholar 

  14. Wyke, J. A. and Weiss, R. A. (1984). The contribution of tumor viruses to human and experimental oncology.Cancer Surveys 3:1–24.

    Google Scholar 

  15. Knudson, A. G. (1985). Hereditary cancer oncogenes, and antioncogenes.Cancer Res. 45:1437–1443.

    PubMed  Google Scholar 

  16. Spandidos, D. A. (1985). Mechanism of carcinogenesis: the role oncogenes, transcriptional enhancers and growth factors.Anticancer Res. 5:485–498.

    PubMed  Google Scholar 

  17. Spandidos, D. A. and Siminovitch, L. (1985). Transfer of anchorage independence by isolated metaphase chromosomes in hamster cells.Cell 12:675–682.

    Google Scholar 

  18. Spandidos, D. A. and Siminovitch, L. (1978). Transfer of the marker for the morphologically transformed phenotype by isolated metaphase chromosomes in hamster cells.Nature,271:259–261.

    PubMed  Google Scholar 

  19. Shih, C., Shilo, B.-Z., Goldfarb, M. P., Dannenberg, A. and Weinberg, R. A. (1971). Passage of phenotypes of chemically transformed cells via transfection of DNA and chromatin.Proc. Natl. Acad. Sci. USA 76:5714–5718.

    Google Scholar 

  20. Sandos, E. Sukumar, S., Martin-Zanca, D., Zarbl, H. and Barbacid, M. (1985). Transformingras genes. In:Viruses and Cancer (P. W. J. Rigby and N. M. Wilkie, Eds.), Cambridge University Press, pp. 291–313.

  21. Ponder, B. A. J. (1980). Genetics and cancer.Biochem. Biophys. Acta 605:369–410.

    PubMed  Google Scholar 

  22. Lehman, A. R. (1982). Xeroderma pigmentosum, Cockayne syndrome and ataxia-telangiectasia: Disorders relating DNA repair to carcinogenesis.Cancer Surveys 1:93–118.

    Google Scholar 

  23. Meuth, M., L'Heureux-Huard, N. and Trudel, M. (1979). Characterization of a mutator gene in Chinese hamster ovary cells.Proc. Natl. Acad. Sci. USA 76:6505–6509.

    PubMed  Google Scholar 

  24. Thorgeirsson, S. S. and Nebert, D. W. (1977). The Ah locus and the metabolism of chemical carcinogens and other foreign compounds.Adv. Cancer Res. 25:149–193.

    PubMed  Google Scholar 

  25. Sodroski, J., Rosen, C., Goh, W. C. and Haseltine, W. (1985). A transcriptional activator protein encoded by the x-lor region of the human T-cell leukemia virus.Science 228:1430–1434.

    PubMed  Google Scholar 

  26. Miller, R. W. (1970). Neoplasia and Down's syndrome.Ann. N. Y. Acad. Sci. 171:637–644.

    Google Scholar 

  27. Benedict, W. F., Murphree, A. L., Banerjee, A., Spina, C. A., Sparkes, M. C. and Sparkes, R. S. (1983). Patient with 13 chromosome deletion: Evidence that the retinoblastoma gene is a recessive cancer gene.Science 219:973–975.

    PubMed  Google Scholar 

  28. Cavenee, W. K., Doyja, T. P., Phillips, R. A., Benedict, W. F., Godbout, R., Gallie, B. L., Murphee, A. L., Strong, L. C. and White, R. L. (1983). Expression of recessive alleles by chromosomal mechanisms in retinoblastoma.Nature 305:779–784.

    PubMed  Google Scholar 

  29. Murphee, A. L. and Benedict, W. F. (1984). Retinoblastoma: Clues to human oncogenes.Science 223:1028–1033.

    PubMed  Google Scholar 

  30. Koufos, A., Hansen, M. F., Lampkin, B. C., Workman M. L., Copeland, N. G., Jenkins, N. A. and Cavanee, W. K. (1984). Loss of alleles at loci on human chromosome 11 during genesis of Wilm's tumour.Nature 309:170–172.

    PubMed  Google Scholar 

  31. Cowell, J. K. (1984). Tracking the cancer genes in paediatric predisposition syndromes: opportunity for prenatal diagnosis.Cancer Surveys 3:573–601.

    Google Scholar 

  32. Kovelovich, L. (1982). Adenomatosis of the colon and rectum: relevance to inheritance and susceptibility mechanisms in human cancer.Cancer Surveys 1:71–91.

    Google Scholar 

  33. Wang, J. L. and Hsu, Y.-M. (1986). Negative regulators of cell growth.Trends in Biochem. Sci. 11: 24–26.

    Google Scholar 

  34. Land, H., Parada, L. F. and Weinburg, R. A. (1983). Tumorigenic conversion of primary embryo fibroblasts requires at least two co-operating oncogenes.Nature 304:596–602.

    PubMed  Google Scholar 

  35. Scherer, E. (1984). Neoplastic progression in experimental hepatocarcinogenesis.Biochem. Biophys. Acta 738:219–236.

    PubMed  Google Scholar 

  36. Spandidos, D. A. and Siminovitch, L. (1978). The relationship between transformation and somatic mutation in human and Chinese hamster cells.Cell 13:651–662.

    PubMed  Google Scholar 

  37. Farber, E. (1984). Cellular biochemistry of the stepwise development of cancer with chemicals.Cancer Res. 44:5463–5474.

    PubMed  Google Scholar 

  38. Armitage, P. and Doll, R. (1957). A two stage theory of carcinogenesis in relation to the age distribution of human cancer.Br. J. Cancer 11:161–169.

    PubMed  Google Scholar 

  39. Ames, B. N. (1979). Identifying environmental chemicals causing mutations and cancer.Science 204:587–593.

    PubMed  Google Scholar 

  40. Bouck, N. and I Mayorca, G. (1976). Somatic mutation as the basis for malignant transformation of BHK cells by chemical carcinogens.Nature 264:722–727.

    PubMed  Google Scholar 

  41. Yunis, J. J. (1983). The chromosomal basis of human neoplasia.Science 221:227–236.

    PubMed  Google Scholar 

  42. Knudson, A. G. (1971). Mutation and cancer: statistical study of retinoblastoma.Proc. Natl. Acad. Sci. USA 68:820–823.

    PubMed  Google Scholar 

  43. Setlow, R. B. (1985). Repair deficient human disorders and cancer.Nature 271:713–717.

    Google Scholar 

  44. McKusick, V. A. (1975).Mendelian Inheritance in Man.4th edn. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  45. Mulvihill, J. J. (1977). Genetic repertory of human neoplasia. In:Genetics of Human Cancer. (J. J. Mulvihill, R. V. Miller and J. J. F. Fraumoni Eds.), Raven Press, New York, pp. 241–306.

    Google Scholar 

  46. Anderson, D. E. (1978). An inherited form of large bowel cancer. Muir's syndrome.Cancer 45:1103–1107.

    Google Scholar 

  47. Graham, F. L. and Van der Eb, A. J. (1983). A new technique for the assay of infectivity of human adenovirus 5 DNA.Virology 52:456–461.

    Google Scholar 

  48. Sukumar, S., Notario, V., Martin-Zanca, D. and Barbacid, M. (1983). Induction of mamary carcinomas in rats by nitroso-methyl-urea involves the malignant activation of the Ha-ras-1 locus by single point mutations.Nature 306:658–661.

    PubMed  Google Scholar 

  49. Balmain, A., Ramsden, M., Bowden, G. T. and Smith, J. (1984). Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas.Nature 307:658–660.

    PubMed  Google Scholar 

  50. Guerrero, I., Corzada, P., Mayer, A. and Pellicer, A. (1984). Molecular approach to leukemogenesis: mouse lymphomas contain an activated c-ras oncogene.Proc. Natl. Acad. Sci. USA 81:202–205.

    PubMed  Google Scholar 

  51. Spandidos, D. A. and Kerr, I. B. (1984). Elevated expression of the humanras oncogene family in premalignant and malignant tumours of the colorectum.Br. J. Cancer 49:681–688.

    PubMed  Google Scholar 

  52. Slamon, D. J., Dekernion, J. B., Verma, I. M. and Cline, M. J. (1984). Expression of cellular oncogenes in human malignancies.Science 224:256–262.

    PubMed  Google Scholar 

  53. Spandidos, D. A., Lamothe, A. and Field, J. N. (1985). Multiple transcriptional activation of cellular oncogenes in human head and neck solid tumours.Anticancer Res. 5:221–224.

    PubMed  Google Scholar 

  54. Yokota, J., Tsunetsugu-Yokota, Y., Battifora, H., Le Fevre, C. and Cline, M. J. (1986). Alterations ofmyc, myb, andras Ha proto-oncogenes in cancers are frequent and show clinical correlation.Science 231:261–265.

    PubMed  Google Scholar 

  55. Heppner, G. H. (1984). Tumor heterogeneity.Cancer Res. 44:2259–2262.

    PubMed  Google Scholar 

  56. Westerveld, A., Hueijmakers, J. H. J., Van Duin, M., De Wit, J., Odijk, J., Pastink, A., Wood, R. D. and Bootsma, D. (1984). Molecular cloning of a human DNA repair gene.Nature 310:425–429.

    PubMed  Google Scholar 

  57. Spandidos, D. A. and Wilkie, N. M. (1984). Malignant transformation of early passage rodent cells by a single mutated human oncogene.Nature 310:469–475.

    PubMed  Google Scholar 

  58. Williams, A. R. W., Piris, J., Spandidos, D. A. and Wyllie, A. H. (1985). Immunohistochemical detection of theras oncogene p21 product in an experimental tumour and in human colorectal neoplasms.Br. J. Cancer 52:687–693.

    PubMed  Google Scholar 

  59. Pragnell, I. B., Spandidos, D. A. and Wilkie, N. M. (1985). Consequences of altered oncogene expression in rodent cells.Proc. Roy. Soc. London UK B226:107–119.

    Google Scholar 

  60. Chang, E. H., Furth, M. E., Scolnick, E. M. and Lowy, D. R. (1982). Tumorigenic transformation of mammalian cells induced by a normal gene homologous to the oncogene of Harvey murine sarcoma virus.Nature 297:479–483.

    PubMed  Google Scholar 

  61. Vousden, K. M. and Marshall, C. J. (1984). Three different activatedras genes in mouse tumours: Evidence for oncogene activation during progression of a mouse lymphoma.EMBO J. 3: 913–917.

    PubMed  Google Scholar 

  62. Albino, A. P., Lestange, R., Oliff, A. I., Furth, M. E. and Old, L. J. (1983). Transformingras genes from human melanona: A manifestation of tumor heterogeneity?Nature 308:69–72.

    Google Scholar 

  63. Thorgeirsson, U. P., Turpeenniemi-Hujanen T., Williams, J. E., Westin, E. H., Heilman, C. A., Talmadge, J. E. and Liotta, L. A. (1985). NIH/3T3 cells transfected with human tumor DNA containing activatedras oncogenes express the metastatic phenotype in nude mice.Mol. Cell. Biol. 5:259–262.

    PubMed  Google Scholar 

  64. Mougnieau, E., Lemieux, L., Rassoulzadegan, M. and Couzin, F. (1984). Biological activities of v-myc and rearranged c-myc oncogenes in rat fibroblast cells in culture.Proc. Natl. Acad. Sci. USA 81:5758–5762.

    PubMed  Google Scholar 

  65. Keath, E. J., Caimi, P. G. and Cole, M. D. (1984). Fibroblast cell lines expressing activated c-myc oncogenes are tumorigenic in nude mice and syngeneric animals.Cell 39:339–348.

    PubMed  Google Scholar 

  66. Little, C. D., Lau, M. M., Carney, D. N., Gazdar, A. F. and Minna, J. D. (1983). Amplification and expression of the c-myc oncogene in human lung cancer lines.Nature 306:194–196.

    PubMed  Google Scholar 

  67. Besmer, P. (1984). Acute transforming feline retroviruses.Curr. Topics Microb. Imm. 107:1–28.

    Google Scholar 

  68. Neil, J. C., Hughes, D., McFarlane, R., Wilkie, N. M., Onions, D. E., Lees, G. and Jarrett, O. (1984). Transduction and rearrangement of the myc gene by feline leukemia virus in naturally occurring T-cell leukemias.Nature 308:814–820.

    PubMed  Google Scholar 

  69. Neel, B. G., Hayward, W. S., Robinson, H. L., Fang, J. and Astrin, S. (1981). ALV induced tumours have common proviral integration sites and synthesise discrete new mRNA; oncogenes by promoter insertion.Cell 23:323–334.

    PubMed  Google Scholar 

  70. Klein, G. (1981). The role of gene dosage and genetic transpositions in carcinogenesis.Nature 294:313–318.

    PubMed  Google Scholar 

  71. Kirsch, I. R., Morton, C. C., Nakahara, K. and Leder, P. (1982). Human immunoglobulin heavy chain genes map to a region of translocations in malignant B lymphocytes.Science 216:301–303.

    PubMed  Google Scholar 

  72. Battey, J., Moulding, G., Taub, R., Murphy, W., Stewart, T., Patter, G., Lenoir, G. and Leder, P. (1983). The human c-myc oncogene. Structural consequences of translocation into the Ig-H locus in Burkitt lymphoma.Cell 34:779–787.

    PubMed  Google Scholar 

  73. Groffen, J., Stephenson, J. R., Heisterkamp, N., De Klein, A., Bartram, C. R. and Grosveld, G. (1984). Philadelphia chromosomal breakpoints are clustered within a limited region, ber, on chromosome 22.Cell 36:93–99.

    PubMed  Google Scholar 

  74. Hayday, A., Gillies, S. D., Saito, H., Wood, C., Wiman, K., Hayward, W. S. and Tonegawa, S. (1984). Activation of a translocated human c-myc gene by an enhancer in the immunoglobulin heavy-chain locus.Nature 307:334–340.

    PubMed  Google Scholar 

  75. Bernard, O., Cory, S., Gerondakis, S., Webb, E. and Adams, J. (1983). Sequence of the murine and human cellular myc oncogenes and two modes of myc transcription resulting from a chromosome translocation in B lymphoid tumours.EMBO J. 2:2375–2383.

    PubMed  Google Scholar 

  76. Erikson, J., Ar-Rushdi, A., Orwinga, J. L., Nowell, P. C. and Croce, C. M. (1983). Transcriptional activation of the translocated c-myc oncogene in Burkitt lymphoma.Proc. Natl. Acad. Sci. USA 80:820–824.

    PubMed  Google Scholar 

  77. Davis, M., Malcolm, S. and Rabbitts, T. H. (1984). Chromosome translocation can occur on either side of the c-myc oncogene in Burkitt lymphoma cells.Nature 308:286–288.

    PubMed  Google Scholar 

  78. Rabbitts, P. H., Forster, A., Stinson, M. A. and Rabbitts, T. H. (1985). Translocation of exon 1 from the c-myc gene results in prolonged c-myc mRNA stability.EMBO J. 4:3727–3733.

    PubMed  Google Scholar 

  79. Eick, D., Piechazyk, M., Henglein, B., Blanchard, J. M., Traub, B., Kofler, E., Wiest, S., Lenoir, G. M. and Bornkamm, G. W. (1985). Aberrant c-myc RNAs of Burkitt's lymphoma cells have longer half-live.EMBO J. 4:3717–3725.

    PubMed  Google Scholar 

  80. Shtivelman, E., Lifshitz, B., Gale, R. P. and Ganaani, E. (1985). A fused transript of the abl and bcr genes in chronic myelogenous leukemia.Nature 315:550–554.

    PubMed  Google Scholar 

  81. Reddy, E. P., Reynolds, R. K., Santos, E. and Barbacid, M. (1982). A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene.Nature 300:149–152.

    PubMed  Google Scholar 

  82. Tabin, C. J., Bradley, S., Bargman, C., Weinberg, R., Papageorge, A., Scolnick, E., Dhar, R., Lowr, D. and Chang, E. (1982). Mechanism of activation of human oncogene.Nature 300:143–149.

    PubMed  Google Scholar 

  83. Taparowsky, E., Suard, Y., Fasano, O., Simizu, K., Goldfard, M. and Wigler, M. (1982). Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change.Nature 300:762–765.

    PubMed  Google Scholar 

  84. Yuasa, Y., Srivastava, S. K., Dunn, C. Y., Rhim, J. S., Reddy, E. P. and Aaronson, S. A. (1983). Acquisition of transforming properties by alternative point mutations within c-bas/has human proto-oncogene.Nature 303:775–779.

    PubMed  Google Scholar 

  85. Bos, J. L., Toksoz, D., Marshall, C. J., Verlaan-De Vries, M., Veeneman, G. H., Van Der Eb, A. J., Van Boom, J. H., Janssen, J. W. G. and Steenvoorden, A. C. M. (1985). Amino-acid substitutions at codon 13 of the N-ras oncogene in human acute myeloid leukaemia.Nature 315:726–730.

    PubMed  Google Scholar 

  86. Seeburg, P. H., Colby, W. W., Hayflick, J. S., Capon, D. J., Goeddel, D. V. and Levinson, A. D. (1984). Biological properties of human c-Ha-rasl genes mutated at codon 12.Nature 312:71–75.

    PubMed  Google Scholar 

  87. Fasano, O., Aldrich, T., Tamanoi, F., Taparowdky, E., Furth, M. and Wigler, M. (1984). Analysis of the transforming potential of the human H-ras gene by random mutagenesis.Proc. Natl. Acad. Sci. USA 81:4008–4012.

    PubMed  Google Scholar 

  88. Alitalo, K. (1985). Amplification of cellular oncogenes in cancer cells.Trends in Biochemical Sciences 10:194–197.

    Google Scholar 

  89. Aoseoki, J. G., Rosen, C. A. and Haseltine, W. A. (1984). Trans-acting transcriptional activation of the long terminal repeat of human T lymphotripic viruses in infected cells.Science 225:381–385.

    PubMed  Google Scholar 

  90. Gaynor, R. B., Hillman, D. and Berk, A. J. (1984). Adenovirus early region 1A protein activates transcription of a nonviral gene introduced into mammalian cells by infection or transfection.Proc. Natl. Acad. Sci. USA 81:1193–1197.

    PubMed  Google Scholar 

  91. Borrelli, E., Hen, R. and Chambon, P. (1984). Adenovirus-2 E1A products repress enhancer-induced stimulation of transcription.Nature 312:608–615.

    PubMed  Google Scholar 

  92. Mechler, B. M., McGinnis, W. and Gehring, W. J. (1985). Molecular cloning of lethal (2) giant larvae, a recessive oncogene of Drosophila melanogaster.EMBO J. 4:1551–1557.

    PubMed  Google Scholar 

  93. Weinstein, I. B. (1981). Current concepts and controversies in chemical carcinogenesis.J. Supp. St. Cell Biochem. 17:99–120.

    Google Scholar 

  94. Slaga, T. J. (1983). Cellular and molecular mechanisms of tumour promotion.Cancer Surveys 2:595–612.

    Google Scholar 

  95. Varshavsky, A. (1981). Phorbol ester dramatically increases incidence of methorexate-resistant mouse cells: Possible mechanisms and relevance to tumor promotion.Cell 25:561–571.

    PubMed  Google Scholar 

  96. Parry, J. M., Parry, E. M. and Barrett, J. C. (1981). Tumor promoters induce mitotic aneuploidy in yeast.Nature 294:263–265.

    PubMed  Google Scholar 

  97. Colburn, N. H., Former, B. F., Nelson, K. A. and Yaspa, S. H. (1979). Tumor promoter induces anchorage independent irreversibly.Nature 281:589–591.

    PubMed  Google Scholar 

  98. Fischer, P. B. and Weinstein, I. B. (1979). Chemical viral interactions and multistep aspects of cell transformation. In:Molecular and Cellular Aspects of Carcinogen Screening Tests (R. Montesano, H. Bartsch and L. Tomates, Eds.), IARC Scientific Publications, pp. 113–131.

  99. Kinsella, A. R. and Radman, M. (1978). Tumor promoter induces sister chromatid exchanges: relevance to mechanisms of carcinogenesis.Proc. Natl. Acad. Sci. USA 75:6149–6153.

    PubMed  Google Scholar 

  100. Hsiao, W.-L. W., Cattoni-Celli, S. and Weinstein, I. B. (1984). Effects of 5-azacytidine on the progressive nature of cell transformation.Science 226:552–555.

    PubMed  Google Scholar 

  101. Sachs, L. (1978). Control of normal cell differentiation and the phenotypic reversion of malignancy in myeloid leukemia.Nature 274:535–539.

    PubMed  Google Scholar 

  102. Mintz, B. and Illmensee, K. (1975). Normal genetically mosaic mice produced from malignant teratocarcinoma cells.Proc. Natl. Acad. Sci. USA 77:3585–3589.

    Google Scholar 

  103. Kennedy, A. R., Cairns, J. and Little, J. B. (1984). Timing of the steps in transformation of C3H 10T1/2 cells by X-irradiation.Nature 307:85–86.

    PubMed  Google Scholar 

  104. Boehm, T. L. J. and Drahousky, D. (1983). Alteration of enzymatic methylation of DNA cytosines by chemical carcinogens: a mechanism involved in the initiation of carcinogenesis.J. Nat. Cancer Inst. 71:429–433.

    PubMed  Google Scholar 

  105. Wilson, V. L. and Jones, P. A. (1983). Inhibition of DNA methylation by chemical carcinogenesisin vitro.Cell 32:239–246.

    PubMed  Google Scholar 

  106. Hoffman, R. M. (1984). Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis.Biochem. Biophys. Acta 738:49–87.

    PubMed  Google Scholar 

  107. Feinberg, A. P. and Vogelstein, M. (1983). Hypomethylation of ras oncogenes in primary human cancer.Biochem. Biophys. Res. Comm. 111:47–54.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spandidos, D.A. A unified theory for the development of cancer. Biosci Rep 6, 691–708 (1986). https://doi.org/10.1007/BF01116536

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01116536

Key Words

Navigation