Skip to main content
Log in

Experimental verification of a microbuckling model for the axial compressive failure of high performance polymer fibres

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A previously derived theoretical compressive strength for fibres composed of uniaxially oriented and extended polymer chains was compared with the measured strengths of several high performance fibres. For failure initiated by elastic microbuckling of polymer chains or fibrils, the maximum fibre strength is predicted to be equal to the minimum longitudinal shear modulus of the fibre. An excellent linear correlation between measured strengths and torsion moduli was obtained for four liquid-crystalline polymer fibres and high modulus graphite fibres. The correlation shows that measured strengths are 30% of the corresponding torsion moduli for all these fibres. A high modulus, high strength polyethylene fibre exhibited a compressive strength-torsion modulus ratio that was lower than the value 0.3 obtained for the other fibres examined in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. DeTeresa, S. R. Allen, R. J. Farris andR. S. Porter,J. Mater. Sci. 19 (1984) 57.

    Google Scholar 

  2. T. Takahashi, M. Miura andK. Sakurai,J. Appl. Polym. Sci. 28 (1983) 579.

    Google Scholar 

  3. S. R. Allen, A. G. Filippov, R. J. Farris, E. L. Thomas, C-P. Wong, G. C. Berry andE. C. Chenevey,Macromol. 14 (1981) 1135.

    Google Scholar 

  4. M. G. Dobb, D. J. Johnson andB. P. Saville,Polymer 22 (1981) 960.

    Google Scholar 

  5. J. M. Greenwood andP. G. Rose,J. Mater. Sci. 9 (1974) 1809.

    Google Scholar 

  6. M. M. Schoppee andJ. Skelton,Textile Res. J. 44 (1974) 968.

    Google Scholar 

  7. S. J. DeTeresa, R. S. Porter andR. J. Farris,J. Mater. Sci. 20 (1985) 1645.

    Google Scholar 

  8. H. M. Hawthorne andE. Teghtsoonian,ibid. 10 (1975) 41.

    Google Scholar 

  9. E. Orowan,Nature 149 (1942) 643.

    Google Scholar 

  10. K. Shigematsu, K. Imada andM. Takayanagi,J. Polym. Sci. Polym. Phys. Edn. 13 (1975) 73.

    Google Scholar 

  11. M. S. Paterson andL. E. Weiss,Geol. Soc. Amer. Bull. 77 (1966) 343.

    Google Scholar 

  12. N. C. Gay andL. E. Weiss,Tectonophysics 21 (1974) 287.

    Google Scholar 

  13. E. Honea andA. M. Johnson,ibid. 30 (1976) 197.

    Google Scholar 

  14. C. W. Weaver andJ. G. Williams,J. Mater. Sci. 10 (1975) 1323.

    Google Scholar 

  15. C. R. Chaplin,ibid. 12 (1977) 347.

    Google Scholar 

  16. A. S. Argon, in “Treatise on Materials Science and Technology”, Vol. 1, edited by H. Herman (Academic, New York, 1972) p. 79.

    Google Scholar 

  17. A. G. Evans andW. F. Adler,Acta Metall. 26 (1978) 725.

    Google Scholar 

  18. L. E. Weiss,Tectonophysics 65 (1980) 1.

    Google Scholar 

  19. R. E. Robertson,J. Polym. Sci. A-27 (1969) 1315.

    Google Scholar 

  20. H. Blades, US Patent 3 869 430, assigned to E. I. DuPont de Nemours Co. (1975).

  21. P. Smith andP. Lemstra,J. Mater. Sci. 15 (1980) 505.

    Google Scholar 

  22. R. J. Diefendorf andE. Tokarsky,Polym. Eng. Sci. 15 (1975) 150.

    Google Scholar 

  23. W. N. Reynolds, in “Chemistry and Physics of Carbon”, Vol. II, edited by P. L. Walker, Jr and P. A. Thrower (Marcel Dekker, New York, 1973) p. 2.

    Google Scholar 

  24. W. R. Jones andJ. W. Johnson,Carbon 9 (1971) 645.

    Google Scholar 

  25. A. J. Perry, B. Ineichen andB. Eliasson,J. Mater. Sci. Lett. 9 (1974) 1376.

    Google Scholar 

  26. ASTM D3379-75e, ASTM, Philadelphia (1975).

  27. S. J. DeTeresa, R. S. Porter andR. J. Farris,Polym. Comp. 2 (1982) 57.

    Google Scholar 

  28. R. E. Wilfong andJ. Zimmerman,J. Appl. Polym. Sci. Appl. Polym. Symp. 31 (1977) 1.

    Google Scholar 

  29. J. F. Mammone andW. C. Uy, Air Force Technical Report, AFML-TR-82-4154 (1984).

  30. E. J. Seldin andC. W. Nezbeda,J. Appl. Phys. 41 (1970) 3389.

    Google Scholar 

  31. D. W. Hadley, P. R. Pinnock andI. M. Ward,J. Mater. Sci. 4 (1969) 152.

    Google Scholar 

  32. M. G. Dobb, D. J. Johnson andB. P. Saville,J. Polym. Sci. Polym. Phys. Edn. 15 (1977) 2201.

    Google Scholar 

  33. R. Hagege, M. Jarrin andM. J. Sotton,J. Microsc. O. 115 (1979) 65.

    Google Scholar 

  34. S. B. Warner,Macromol. 16 (1983) 1546.

    Google Scholar 

  35. R. Bacon, in “Chemistry and Physics of Carbon”, Vol. 9, edited by P. L. Walker Jr and P. A. Thrower (Marcel Dekker, New York, 1973) p. 80.

    Google Scholar 

  36. J-B. Donnet andR. C. Bansal, in “Carbon Fibers” (Marcel Dekker, New York, 1984) p. 171.

    Google Scholar 

  37. K. Chen, C. W. LeMaistre, J. H. Wang andR. J. Diefendorf, 182nd National Conference, ACS, Poly 137, New York, August (1981).

  38. S. R. Allen, A. G. Filippov, R. J. Farris andE. L. Thomas,J. Appl. Polym. Sci. 26 (1981) 291.

    Google Scholar 

  39. S. R. Allen, PhD thesis, University of Massachusetts, Amherst (1983).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deteresa, S.J., Porter, R.S. & Farris, R.J. Experimental verification of a microbuckling model for the axial compressive failure of high performance polymer fibres. J Mater Sci 23, 1886–1894 (1988). https://doi.org/10.1007/BF01115735

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01115735

Keywords

Navigation