Skip to main content
Log in

Mechanisms of fatigue crack initiation in metals: role of aqueous environments

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fatigue crack initiation in engineering materials has been the subject of considerable research. Most of these investigations focused on gaseous environment effects, and extensive review articles have appeared in recent times discussing the role of gaseous environments on crack initiation. Because of experimental difficulties, the effect of aqueous environments on mechanisms of fatigue crack initiation has received little attention, despite their unquestionable importance from an engineering standpoint. In this review, several of the fatigue crack initiation models are examined in detail and their anomalies discussed. The physics and micromechanisms of crack initiation during cyclic deformation in aqueous environments which are highly corrosive in nature are examined. The characteristics of the crack initiation process in aqueous environments are critically reviewed in the light of the specific role of several concurrent factors involving the nature of the aqueous medium, corrosion interactions, alloy chemistry, processing treatments, intrinsic microstructural effects and test variables.[/p]

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Fine,Met. Trans. 11A (1980) 365.

    Google Scholar 

  2. S. Suresh andR. O. Ritchie,Int. Metals Rev. 29(6) (1984).

  3. N. Thompson andN. J. Wadsworth,Metal Fatigue Adv. Metal Phys. (Phil. Mag. Suppl.) 7 (1958) 72.

    Google Scholar 

  4. T. H. Alden, Report no. 62-RL-2923, General Electric Research Laboratory (1962).

  5. D. H. Avery andW. A. Backofen, “Fracture of Solids”, edited by D. C. Drucker and J. C. Gilman (Interscience, New York, 1963) p. 339.

    Google Scholar 

  6. J. C. Grosskreutz,J. Appl. Phys. 34 (1963) 372.

    Google Scholar 

  7. J. C. Grosskreutz andP. Waldow,Acta Metall. 11 (1963) 717.

    Google Scholar 

  8. K. U. Snowden,ibid. 11 (1963) 675.

    Google Scholar 

  9. C. Laird andG. C. Smith,Philos. Mag. 8 (1963) 1945.

    Google Scholar 

  10. M. J. May andR. W. K. Honeycombe,J. Inst. Metals 92 (1963–64) 41.

    Google Scholar 

  11. J. C. Grosskreutz, Sagamore Conference, Fatigue—An Interdisciplinary Approach, edited by J. J. Burke, N. L. Reed and V. Weis (Syracuse University Press, 1964) p. 27.

  12. B. L. Ritter andN. L. Grant, “Thermal and High Strain Fatigue” (Institute of Metals, London, 1967) p. 80.

    Google Scholar 

  13. J. C. Grosskreutz andG. G. Shaw, “Fracture 1969” Proceedings of the Second International Conference on Fracture, Brighton, 1969 (Chapman and Hall, London, 1969) p. 602.

    Google Scholar 

  14. W. J. Plumbridge andD. A. Ryder,Metall. Rev. 136 (1969) 119.

    Google Scholar 

  15. J. C. Grosskreutz,Phys. Status Solidi (1970).

  16. D. J. Duquette, “Corrosion Fatigue — Chemistry Mechanics and Microstructure”, NACE-2, edited by O. F Devereuxet al. (1972) p. 12.

  17. “Corrosion Fatigue”, University of Newcastle,Met. Sci. 13 (1979).

  18. H. Mughrabi, R. Wang, K. Differt andU. Essmar, “Fatigue Crack Initiation by Cyclic Slip Irreversibility in High Cycle Fatigue”, International Conference in Quantitative Measurement of Fatigue Damage, Dearborn, Michigan (1982).

  19. Z. S. Basinski, R. Pascual andS. J. Basinski,Acta Metall. 31 (1983) 591.

    Google Scholar 

  20. M. E. Fine andR. O. Ritchie, Fatigue and Microstructure, edited by M. Meshii (American Society of Metals, Metals Park, Ohio, 1979) p. 245.

    Google Scholar 

  21. P. H. Frith,J. Iron Steel Inst. 159 (1948) 385.

    Google Scholar 

  22. W. A. Wood, “Fatigue in Aircraft Structuresrd (Academic, New York, 1956).

    Google Scholar 

  23. H. E.Frankel, A. Bennett andW. A. Pennington,Trans. ASM 52 (1960) 257.

    Google Scholar 

  24. W. A. Wood, S. Coustand andK. R. Sargart,Acta Metall. 11 (1963) 643.

    Google Scholar 

  25. P. R. Swann, F. P. Ford andA. R. C. Westwood, (eds) “Mechanisms of Environment Sensitive Cracking of Materials” (Metals Society, UK, 1977).

    Google Scholar 

  26. H. H. Atkins0n,J. Appl. Phys. 30 (1959) 637.

    Google Scholar 

  27. J. C. Grosskreutz,Phys. Status Solidi 47 (1971) 11.

    Google Scholar 

  28. C. Laird andD. J. Duquette, “Corrosion Fatigue —Chemistry, Mechanisms and Microstructure”, NACE-2, edited by O. F. Devereuxet al. (1971) p. 88.

  29. N. Thompson, N. J. Wadsworth andN. Louat,Philos. Mag. 1 (1956) 113.

    Google Scholar 

  30. J. V. Sharp,ibid. 16 (1963) 77.

    Google Scholar 

  31. P. J. E. Forsyth andC. A. Stubbington,J. Inst. Metals 83 (1954–55) 395.

    Google Scholar 

  32. Idem, ibid. 86 (1956–57) 339.

    Google Scholar 

  33. Idem, ibid. 86 (1957–58) 90.

    Google Scholar 

  34. A. H. Cottrell andD. Hull,Proc. R. Soc. A242 (1957) 211.

    Google Scholar 

  35. W. A. Wood andR. L. Segall,Bull. Inst. Metall. 3 (1957) 160.

    Google Scholar 

  36. J. M. Finney andC. Laird,Philos. Mag. 31 (1975) 339.

    Google Scholar 

  37. D. Hull,J. Inst. Metals 86 (1958) 425.

    Google Scholar 

  38. R. C. Boettner, A. J. McEvily, Jr andY. C. Lin,Philos. Mag. 10 (1964) 95.

    Google Scholar 

  39. D. I. Golland andP. L. James,Acta Metall. 15 (1967) 1889.

    Google Scholar 

  40. N. F. Mott,ibid. 6 (1958) 195.

    Google Scholar 

  41. A. J. McEvily, Jr andE. S. Machlin, “Fracture” (Wiley, 1959) p. 450.

  42. A. J. Kennedy,Philos. Mag. 6 (1961) 49.

    Google Scholar 

  43. P. G. Patridge,Acta Metall. 13 (1965) 517.

    Google Scholar 

  44. D. F. Watt,Philos. Mag. 14 (1966) 87.

    Google Scholar 

  45. P. Neumann,Acta Metall. 17 (1969) 1219.

    Google Scholar 

  46. A. N. May,Nature 185 (1960) 303.

    Google Scholar 

  47. Idem, ibid. 186 (1960) 573.

    Google Scholar 

  48. C. Roberts andA. P. Greenough,Philos. Mag. 12 (1965) 81.

    Google Scholar 

  49. D. F. Watt, J. D. Embury andR. K. Ham,ibid. 17 (1968) 199.

    Google Scholar 

  50. M. P. E. Desvaux,Z. Metallkde 61 (1970) 206.

    Google Scholar 

  51. M. P. E. Desvaux andP. Charsley,Mater. Sci. Engng 4 (1969) 221.

    Google Scholar 

  52. cJ. C. Grosskreutz,J. Electrochem. Soc. 7 (1970) 940.

    Google Scholar 

  53. C. Laird, “Metallurgical Treatises”, edited by J. K. Tien and J. F. Elliott (Metallurgical Society of AIME, 1981).

  54. M. R. Lin, M. E. Fine andT. Mura,Acta Metall. 34 (1986) 619.

    Google Scholar 

  55. J. D. Eshelby,Proc. R. Soc. 241A (1957) 376.

    Google Scholar 

  56. Idem, ibid. 252A (1959) 561.

    Google Scholar 

  57. C. Laird andA. R. Krause, “Inelastic Behavior of Solids”, edited by M. F. Kanninen, W. F. Adler and A. R. Rosenfield, (McGraw Hill, 1970) p. 691.

  58. W. H. Kim andC. Laird,Acta Metall. 26 (1978) 241.

    Google Scholar 

  59. D. S. Kemsley,J. Inst. Metals 85 (1956) 420.

    Google Scholar 

  60. J. Porter andJ. C. Levy,ibid. 89 (1960) 86.

    Google Scholar 

  61. R. C. Boettner, C. Lair andA. J. McEvily, Jr,Trans. ASME 233 (1965) 379.

    Google Scholar 

  62. E. A.Starke, Jr andG. Lutjering, “Fatigue and Microstructure”, edited by M. Meshii (American Society for Metals, Metals Park, Ohio, 1979) p. 275.

    Google Scholar 

  63. R. C. Boettner, A. J. McEvily, Jr andY. C. Liu,Philos. Mag. 10 (1984) 95.

    Google Scholar 

  64. T. S. Sudarshan andM. R. Louthan, Jr,Int. Metals Rev. 32 (3) (1987) 121.

    Google Scholar 

  65. B. P. Haigh,J. Inst. Metals 18 (1917) 55.

    Google Scholar 

  66. D. J. McAdam, Jr,Proc. ASTM 26 (1926) 224.

    Google Scholar 

  67. D. Whitman andU. R. Evans,J. Iron Steel Inst. 165 (1950) 79.

    Google Scholar 

  68. D. J. Duquette, “Fatigue and Microstructure”, edited by M. Meshii (American Society for Metals, Metals Park, Ohio, 1979) p. 336.

    Google Scholar 

  69. R. Johnson, A. McMinn andB. Tomkins, “Proceedings Third International Conference on Mechanical Behavior of Materials” University of Cambridge (Pergamon, Oxford, 1979) p. 371.

    Google Scholar 

  70. B. D. Westcott,Mech. Eng. 60 (1938) 813.

    Google Scholar 

  71. R. N. Parkins, “Corrosion Fatigue” edited by R. N. Parkins and Y. M. Kolotyokin (Metals Society, UK, 1980) p. 36.

    Google Scholar 

  72. D. J. Duquette andH. H. Uhlig,Trans. ASM 61 (1968) 449.

    Google Scholar 

  73. H. Spann, “Corrosion Fatigue”, NACE-2 (1972) p. 40.

  74. H. Kitagawa, T. Fujita andK. Miyazawa, “Corrosion Fatigue Technology”, ASTM STP 642 (American Society for Testing and Materials, Philadelphia, Pennsylvania, 1978) p. 98.

    Google Scholar 

  75. K. Endo, K. Komai andP. Imashiro,Bull. J. SME 20 (1977) 513.

    Google Scholar 

  76. J. Cornet andS. Golan,Corrosion 15 (1959) 262.

    Google Scholar 

  77. G. D. Lehmann,Engineering 122 (1926) 837.

    Google Scholar 

  78. A. M. Binnie,ibid. 128 (1929) 190.

    Google Scholar 

  79. P. Mehdizadeh, R. L. McGlasson andJ. E. Landers,Corrosion 22 (1966) 325.

    Google Scholar 

  80. H. P. Chu andJ. G. Macco, “Corrosion Fatigue Technology”, ASTM STP 642 (American Society for Testing and Materials, Philadelphia, Pennsylvania, 1978) p. 223.

    Google Scholar 

  81. M. Levy andJ. L. Morrossi,ibid.“, p. 300.

    Google Scholar 

  82. R. Ebara, T. Kai andK. Inoue,ibid.“, p. 155.

    Google Scholar 

  83. H. Masuda andD. J. Duquette,Met. Trans. 6A (1975) 87.

    Google Scholar 

  84. E. F. Smith III, R. Jacko andD. J. Duquette, in “Effect of Hydrogen on Behavior of Materials”, edited by I. M. Bernstein and A. W. Thompson (Metallurgical Society of AIME, 1976) p. 218.

  85. D. J. McAdam Jr andG. W. Geil,Proc. ASTM 41 (1928) 696.

    Google Scholar 

  86. M. T. C. Simnad andU. R. Evans,J. Iron Steel Inst. 156 (1947).

  87. U. R. Evans andM. Simnad,Proc. R. Soc. Ser. 188A (1947) 372.

    Google Scholar 

  88. R. N. Parkins, “Corrosion Fatigue”, Proceedings of the First USSR-UK Seminar on Corrosion Fatigue of Metals, edited by R. N. Parkins and Y. H. Kolotkyku, Lvov, USSR (The Metals Society, London, 1984).

    Google Scholar 

  89. A. J. Gould andU. R. Evans,J. Iron Steel Inst. 156 (1947) 531.

    Google Scholar 

  90. O. F. Deveraeux, J. Dresty andB. Kovacs,Met. Trans. 2A (1971) 3225.

    Google Scholar 

  91. H. N. Hahn andD. J. Duquette,ibid. 10A (1979) 1453.

    Google Scholar 

  92. D. J. Duquette andH. H. Uhlig,Trans. ASM 62 (1969) 839.

    Google Scholar 

  93. D. Whitman andU. R. Evans,J. Iron Steel Inst. 165 (1950) 72.

    Google Scholar 

  94. R. W. Staehle, in “Mechanical Behavior of Materials”, edited by K. J. Miller and R. F. Smith, Vol. I (Pergamon, Oxford, 1980) p. 93.

    Google Scholar 

  95. E. D. Hondros andC. Lea,Nature 289 (1981) 663.

    Google Scholar 

  96. J. C. Scully, “The Fundamentals of Corrosion”, 2nd Edn (Pergamon, Oxford, 1975).

    Google Scholar 

  97. D. P. Harvey II, T. S. Sudarshan, M. R.Louthan Jr andR. E. Swanson,J. Mater. Energy Systems 7 (1985) 269.

    Google Scholar 

  98. P. A. Rebinder andE. K. Venstrem,Z. Fiz. Khim. 26 (1952) 12.

    Google Scholar 

  99. V. Liktman, E. Shchukin and P. A. Rebinder, “Physicochemical Mechanisms of Metals” (Academy of Sciences, Jerusalem, 1963) p. 12.

    Google Scholar 

  100. S. P. Lynch, “Mechanisms of Environment Sensitive Cracking of Materials” (The Metals Society, London, 1977) p. 201.

    Google Scholar 

  101. R. E. Stoltz andR. M. Pelloux,Met. Trans. 3A (1972) 2433.

    Google Scholar 

  102. D. Phillips andN. Thompson,Proc. Phys. Soc. Lond. 63B (1950) 39.

    Google Scholar 

  103. S. Harper andA. Cottrell,ibid. 63B (1950) 331.

    Google Scholar 

  104. R. Roscoe,Nature 133 (1934) 912.

    Google Scholar 

  105. I. Kramer andL. Demer,Prog. Mater. Sci. 9(3) (1961) 195.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivatsan, S., Sudarshan, T.S. Mechanisms of fatigue crack initiation in metals: role of aqueous environments. J Mater Sci 23, 1521–1533 (1988). https://doi.org/10.1007/BF01115686

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01115686

Keywords

Navigation