Skip to main content
Log in

Solvent effects on isomerization equilibria: An energetic analysis in the framework of density functional theory

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

We have analyzed equilibrium solvent effects on some isomerization reactions, chosen as the most representative of this wide class of reaction in organic and inorganic chemistry. Solvent effects were modeled by the self-consistent reaction field approach, in the framework of the density functional computational scheme, as implemented in the ADF package. We have investigated as “organic reactions” the formamide/formamidic acid and 2-pyridone/2-hydroxypyridine tautomerization reactions, whereas the linkage isomerization of pentaamminenitro cobalt(II) to pentaamminenitrito cobalt(II) was chosen as representative of inorganic isomeric equilibria.

The three examples point out three different limiting behaviors deriving from the interplay of electrostatic and polarization contributions to the total energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguilar MA, Olivares FJ, Tomasi J (1993) J Chem Phys 98:7375

    Google Scholar 

  2. Kim HJ, Hynes JT (1990) J Chem Phys 93:5194

    Google Scholar 

  3. Tucker SC, Truhlar DG (1990) J Am Chem Soc 112:3347

    Google Scholar 

  4. Basilevsky MV, Chudinov GE (1991) Chem Phys 157:327

    Google Scholar 

  5. Marcus RA (1992) J Phys Chem 96:1753

    Google Scholar 

  6. Hockney RW, Eastwood JW (1980) Computer simulation using particles. McGraw-Hill, New York

    Google Scholar 

  7. Ciccotti G, Frenkel D, McDonald IR (eds) (1988) Simulation of liquids and solids. Clarendon, New York

    Google Scholar 

  8. van Gunsteren WF, Weiner PK (1989) Computer simulation of biomolecular systems, Vol I. ESCOM, Leiden

    Google Scholar 

  9. Cristinziano PL, Lelj F, Amodeo P, Barone V (1987) Chem Phys Lett 401:1235

    Google Scholar 

  10. Warshel A (1991) Computer modeling of chemical reactions in enzymes and solutions. Wiley, New York; Luzhkov V, Warshel A (1992) J Comp Chem 13:199; Hwang JK, King G, Creighton S, Warshel A (1988) J Am Chem Soc 110:5297

    Google Scholar 

  11. Barone V, Adamo C (1994) J Comp Chem 15:395

    Google Scholar 

  12. Kirkwood JG (1934) J Chem Phys 2:351

    Google Scholar 

  13. Onsager L (1936) J Am Chem Soc 58:1468

    Google Scholar 

  14. Rinaldi D, Rivail JL (1973) Theor Chim Acta 32:57

    Google Scholar 

  15. Tapia O, Goscinski O (1975) Mol Phys 29:1653

    Google Scholar 

  16. Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117

    Google Scholar 

  17. Cramer CJ, Truhlar DG (1991) J Am Chem Soc 113:8305

    Google Scholar 

  18. Klamt A, Schuurmann G (1993) J Chem Soc Perkin Trans 2:799

    Google Scholar 

  19. Karelson M, Tamm T, Zerner MC (1993) J Phys Chem 97:11901

    Google Scholar 

  20. Wong MW, Wiberg KB, Frisch MJ (1992) J Am Chem Soc 114:1645

    Google Scholar 

  21. Szafran M, Karelson MM, Katritzky AR, Koput J, Zerner MC (1993) J Comput Chem 14:371

    Google Scholar 

  22. Young PE, Hillier IH (1993) Chem Phys Lett 215:405

    Google Scholar 

  23. Tapia O (1991) J Mol Struct (THEOCHEM) 226:59

    Google Scholar 

  24. Wong MW, Wiberg KB, Frisch MJ (1991) J Chem Phys 95:8991

    Google Scholar 

  25. Eley DD (1944) Trans Faraday Soc 40:184

    Google Scholar 

  26. Ben-Naim A (1987) Solyation thermodynamics. Plenum, New York

    Google Scholar 

  27. Hill TL (1958) J Chem Phys 28:1179

    Google Scholar 

  28. Reiss H (1966) Adv Chem Phys 9:1

    Google Scholar 

  29. Pierotti RA (1976) Chem Rev 76:717

    Google Scholar 

  30. Floris FM, Tomasi J (1989) J Comp Chem 10:616

    Google Scholar 

  31. Floris FM, Tomasi J, Pascual Ahuir JL (1991) J Comp Chem 12:784

    Google Scholar 

  32. Adamo C, Barone V, Loison S, Minichino C (1993) J Chem Soc Perkin Trans 2:697

    Google Scholar 

  33. Born M (1920) Z Phys 1:45

    Google Scholar 

  34. Rashin AA, Honig B (1985) J Phys Chem 89:5588

    Google Scholar 

  35. Jackson JD (1975) Classical electrodynamics. Wiley, New York

    Google Scholar 

  36. Karelson MM, Zerner MC (1992) J Phys Chem 96:6949

    Google Scholar 

  37. Rival JL, Terryn B (1982) J Chim Phys 79:1

    Google Scholar 

  38. Rinaldi D, Ruiz-Lopez MF, Rivail JL (1983) J Chem Phys 78:834

    Google Scholar 

  39. Adamo C, Lelj F (1994) Chem Phys Lett, in press

  40. Beak P, Covington JB, Smith SG (1976) J Am Chem Soc 98:186

    Google Scholar 

  41. Beak P (1977) Acc Chem Res 10:1866 and refs. therein

    Google Scholar 

  42. Beak P, Covington JB, Smith SG, White JM, Ziegler JM (1980) J Org Chem 45:1354

    Google Scholar 

  43. Hirota E, Sugisaki R, Jorgen C, Sorensen GO (1974) J Mol Spectr 49:251

    Google Scholar 

  44. Brown RD, Godfrey PD, Kleibomer BJ (1987) J Mol Struct 124:34

    Google Scholar 

  45. Moreno M, Miller WH (1990) Chem Phys Lett 171:475

    Google Scholar 

  46. Parchment OG, Burton NA, Hillier IH (1993) Chem Phys Lett 203:46

    Google Scholar 

  47. Wojcik MJ, Hirakawa AY, Tsuboi M (1986) Int J Quantum Chem QBS 13:133

    Google Scholar 

  48. Del Re G, Adamo C (1991) J Phys Chem 95:721

    Google Scholar 

  49. Wiberg KB, Breneman CM (1992) J Am Chem Soc 114:831

    Google Scholar 

  50. Jorgensen SM (1890) J Prakt Chem 41:454

    Google Scholar 

  51. Purcell KF, Kotz JC (1985) Inorganic chemistry. Holt Saunders, London

    Google Scholar 

  52. Murmann RK, Taube H (1956) J Am Chem Soc 78:4886

    Google Scholar 

  53. Pearson RG, Henry PM, Bergmann JG, Basolo F (1956) J Am Chem Soc 78:5920

    Google Scholar 

  54. Grenthe I, Nordin E (1979) Inorg Chem 18:1869

    Google Scholar 

  55. Jackson WG, Lawrance GA, Lay PA, Sargeson AM (1980) Inorg Chem 19:904

    Google Scholar 

  56. Basolo F, Hammaker GS (1962) Inorg Chem 1:1

    Google Scholar 

  57. Balzani V, Ballardini R, Sabbatini N, Moggi L (1968) Inorg Chem 7:1398

    Google Scholar 

  58. Mares M Palmer DA, Kelm H (1978) Inorg Chim Acta 27:153

    Google Scholar 

  59. Jackson WG, Lawrance GA, Lay PA, Sargeson AM (1982) Aust J Chem 25:1561

    Google Scholar 

  60. A modified version of Amsterdam Density Functional System (ADF), Department of Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands

  61. Baerends EJ, Ros P (1978) Int J Quantum Chem Symp 12:169

    Google Scholar 

  62. Boerringter PM, te Velde G, Baerends EJ (1988) Int J Quantum Chem 33:87

    Google Scholar 

  63. Snijders JG, Vernooijs P, Baerends EJ (1982) At Data Nucl Data Tables 26:483 Vernooijs P, Snijders JG, Baerends EJ (1981) Internal Report, Vrije Universiteit, Amsterdam

    Google Scholar 

  64. Krijn J, Baerends EJ (1984) Internal Report, Vrije Universiteit, Amsterdam

    Google Scholar 

  65. Ziegler T, Rauk A (1977) Theoret Chim Acta 46:1

    Google Scholar 

  66. Vosko SH, Wilk L, Nusair M (1980) J Can Phys 58:55

    Google Scholar 

  67. Beoke AD (1988) Phys Rev A 38:3098

    Google Scholar 

  68. Perdew JP (1986) Phys Rev B 33:8822

    Google Scholar 

  69. Versluis L, Ziegler T (1988) J Chem Phys 88:322

    Google Scholar 

  70. Sim F, St-Amant A, Papai I, Salahub DR (1992) J Am Chem Soc 114:4391

    Google Scholar 

  71. Bennet AJ, Wang QP, Slebockatilk H, Somayaji V, Brown RS (1990) J Am Chem Soc 112:6383

    Google Scholar 

  72. Shea KJ, Lease TG, Ziller JW (1990) J Am Chem Soc 112:8627

    Google Scholar 

  73. Penfold B (1953) Acta Crystallogr 6:591

    Google Scholar 

  74. Cotton FA, Edwards WT (1968) Acta Crystallogr Sect. B 24:474

    Google Scholar 

  75. Ziegler T (1991) Chem Rev 91:651

    Google Scholar 

  76. Barone V, Adamo C, Minichino C (1994) J Mol Struct (THEOCHEM), accepted

  77. Montagnani R, Tomasi J (1993) J Mol Struct (THEOCHEM) 279:131

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lelj, F., Adamo, C. Solvent effects on isomerization equilibria: An energetic analysis in the framework of density functional theory. Theoret. Chim. Acta 91, 199–214 (1995). https://doi.org/10.1007/BF01114987

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01114987

Key words

Navigation