Skip to main content
Log in

Hydrogen-bonded and van der Waals complexes studied by a Gaussian density functional method. The case of (HF)2, ArHCl and Ar2HCl systems

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

Linear combination of Gaussian-type orbitals local spin density calculations (LCGTO-LSD) have been performed to further test the applicability to the method of hydrogen-bonded and van der Waals systems. The calculated minimum energy structures and binding energies for the (HF)2, ArHCl and Ar2HCl complexes are presented. In addition, the harmonic vibrational frequencies are reported for (HF)2. The results show that by using nonlocal corrections and increasing the number of radial points in the grid, the calculated parameters are close to experimental ones and provide some encouraging evidence for the reliable use of density functional theory for these complex systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ng CY (ed) (1991) Vacuum ultraviolet photoionization and photodissociation of molecules and clusters. World Scientific, Singapore, and references therein.

  2. Sim F, St-Amant A, Papai I, Salahub DR (1992) J Am Chem Soc 114:4391

    Google Scholar 

  3. Abashkin Y, Mele F, Russo N. Toscano M (1994) Int J Quantum Chem 52:1011

    Google Scholar 

  4. Dykstra CE, Lisy JM (1985) In: Bartlett RJ (ed) Comparison of ab initio quantum chemistry with experiment for small moelcules. Reidel, Dordrecht, p 245

    Google Scholar 

  5. Barton AE, Howard BJ (1982) Faraday Discuss Chem Soc 73:45

    Google Scholar 

  6. Jug K, Gendtner G (1993) J Comput Chem 14:639

    Google Scholar 

  7. Curtis LA, Pople JA (1976) J Mol Spectrosc 61:1

    Google Scholar 

  8. Michael DW, Dykstra CE, Lisy JM (1984) J Chem Phys 81:5998

    Google Scholar 

  9. Gaw JF, Yamaguchi Y, Vincent MA, Schaefer III HF (1984) J Am Chem Soc 106:3133

    Google Scholar 

  10. Briegleb G, Strohmeier W (1953) Z Electrochem 57:668; Franck EV, Meyer F (1959) Z Electrochem 63:571; Chase MW, Curnutt JL, Downey JR, McDonald RA, Syverud AN, Valenzuala EA (1982) Phys Chem Ref Data. 11:695

    Google Scholar 

  11. Pine AS, Lafferty WJ (1983) J Chem Phys 78:2154

    Google Scholar 

  12. Dyke TR, Howard BJ, Klemperer W (1972) J Chem Phys 56:2442

    Google Scholar 

  13. Burstein Y, Isaev AN (1984) Theor Chim Acta 64:397

    Google Scholar 

  14. Frisch MJ, Del Dene JE, Binkley JS, Schaefer HF (1986) J Chem Phys 84:2279

    Google Scholar 

  15. Howar BJ, Dyke TR, Klemperer W (1984) J Chem phys 81:5417

    Google Scholar 

  16. Pine AS, Lafferty WL (1984) J Chem Phys 81:2939

    Google Scholar 

  17. Guelachvili G (1976) Opt Commun 19:150

    Google Scholar 

  18. Gough TE, Miller RE, Scoles G (1981) Faraday Discuss 71:77

    Google Scholar 

  19. Komornicki A, Dixon DA, Taylor PR (1992) J Chem Phys 96:2920

    Google Scholar 

  20. Bohac EJ, Marshall MD, Miller RE (1992) J Chem Phys 96:6681

    Google Scholar 

  21. Robinson RL, Ray D, Gwo Dz-H, Saykally RJ (1987) J Chem Phys 87:5149

    Google Scholar 

  22. Gutowsky HS, Klots TD, Chuang C, Shmuttenmaer CA, Emilson T (1987) J Chem Phys 86:569

    Google Scholar 

  23. Klots TD, Chuang C, Ruoff RS, Emilson T, Gutowsky HS (1987) J Chem Phys 86:5315; Klots TD, Ruoff RS, Chuang C, Emilsson T, Gutowsky HS (1987) J Chem Phys 87:4383

    Google Scholar 

  24. Howard BJ, Pine AS (1985) Chem Phys Lett 122:1

    Google Scholar 

  25. Hutson JM (1988) J Chem Phys 89:4550

    Google Scholar 

  26. Busarov KL, Blake GA, Laughlin KB, Cohen RC, Lee YT, Saykally RJ (1988) J Chem Phys 89:1268

    Google Scholar 

  27. Marshall MD, Charo A, Leung HO, Klemperer W (1985) J Chem Phys 83:4924

    Google Scholar 

  28. Robinson RL, Gwo Dz-H, Ray D, Saykally RJ (1987) J Chem Phys 86:5211

    Google Scholar 

  29. Ray D, Robinson RL, Gwo Dz-H, Saykally RJ (1986) J Chem Phys 84:1172

    Google Scholar 

  30. Robinson RL, Gwo Dz-H, Saykally RJ (1988) Mol Phys 63:1021

    Google Scholar 

  31. Robinson RL, Gwo Dz-H, Saykally RJ (1987) J Chem Phys 86:5211

    Google Scholar 

  32. Elrod MJ, Loeser JG, Saykally RJ (1993) J Chem Phys 98:5352

    Google Scholar 

  33. Elrod MJ, Steyert DW, Saykally RJ (1991) J Chem Phys 95:3182

    Google Scholar 

  34. Elrod MJ, Steyert DW, Saykally RJ (1991) J Chem Phys 94: 58

    Google Scholar 

  35. Novick SE, Janda KC, Holmgreen SL, Woldman M, Klemperer W (1976) J Chem Phys 65:1114

    Google Scholar 

  36. Hutson JM, Beswick JA, Halberstadt N (1989) J Chem Phys 90:1337

    Google Scholar 

  37. Peet AC, Yang W (1989) J Chem Phys 91:6598

    Google Scholar 

  38. Szczesniak MM, Chalasinski G, Piecuch P (1993) J Chem Phys 99:6732

    Google Scholar 

  39. Spoliti M, Bencivenni L, Ramondo F (1994) J Mol Struct (Theochem) 303:185

    Google Scholar 

  40. Watson JKG (1967) J Chem Phys 46:1935

    Google Scholar 

  41. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure IV. Constants of diatomic molecules. van Nostrand Reinhold, New York

    Google Scholar 

  42. Docken K, Schaefer TP (1973) J Mol Spectr 46:454

    Google Scholar 

  43. Jager W, XU Y, Gerry MCL (1993) J Chem Phys 99:919

    Google Scholar 

  44. Tang KT, Toennies JP (1986) Z Phys D 1:91, and references therein

  45. Novick SE, Davies P, Harris SJ, Klemperer W (1973) J Chem Phys 55:2273

    Google Scholar 

  46. St-Amant A (1992) PhD Thesis, Université de Montréal

  47. Salahub DR, Fournier R, Mlynarski P, Papai I, St-Amant A, Ushio J (1991) In: Labanowski J, Andzelm J (eds) Theory and applications of density functional approaches to chemistry, Springer, Berlin

    Google Scholar 

  48. Salahub DR, Russo N (eds) (1992) Metal-ligands interaction from atoms, to cluster, to surfaces. Kluwer, Dordrecht

    Google Scholar 

  49. Abashkin Y, Russo N, to be published

  50. Goursot A, Daul C, to be published

  51. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Google Scholar 

  52. Perdew JP, Wang Y (1986) Phys Rev B 33:8800

    Google Scholar 

  53. Perdew JP (1986) Phys Rev B 33:8822

    Google Scholar 

  54. Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Can J Chem 70:560

    Google Scholar 

  55. Shanno DF (1985) J Optim Theory Appl 46:87

    Google Scholar 

  56. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Google Scholar 

  57. Daul CA, Goursot A, Salahub DR (1993) In: Cerjan C (ed) Numerical grid methods and their application to Schrodinger's equation. NATO ARW Series C, Vol 412, p 153

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mele, F., Mineva, T., Russo, N. et al. Hydrogen-bonded and van der Waals complexes studied by a Gaussian density functional method. The case of (HF)2, ArHCl and Ar2HCl systems. Theoret. Chim. Acta 91, 169–177 (1995). https://doi.org/10.1007/BF01114984

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01114984

Keywords

Navigation