Skip to main content
Log in

Association and insertion complexes of nickel with water and methanol studied using Kohn-Sham theory

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

The complexes formed by simple association of the nickel atom with water and methanol, and those formed by insertion of nickel into O-H and O-C bonds, have been studied by the Linear Combination of Gaussian-type orbitalsdensity functional (LCGTO-DF) method. The binding energies calculated for theassociation complexes are 7 kcal/mol for both Ni(H2O) and Ni(CH3OH). These association complexes have equilibrium geometries characterized by a tetrahedral arrangement of bonds and lone pair around the oxygen atom. Theinsertion complexes HNiOH and HNiOCH3 are more stable than the association complexes by 14 and 18 kcal/mol, respectively. The H3CNiOH insertion complex is still more stable, by an additional 14 kcal/mol. In all five complexes, the lowest singlet and triplet states are nearly degenerate. Comparison of calculated frequencies with infrared spectra of matrix isolated species [MA Park (1988) PhD thesis, Rice University] indicates that only triplet states are seen in the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegbahn PEM, Blomberg MRA (1993) In: van Leeuwen PWNM, van Lenthe JH, Morokuma K (eds) Theoretical aspects of homogeneous catalysis, applications of ab initio molecular orbital theory. Kluwer, Dordrecht

    Google Scholar 

  2. Fournier R (1993) J Chem Phys 98:8041

    Google Scholar 

  3. Bauschlicher CW Jr (1994) J Chem Phys 100:1215

    Google Scholar 

  4. Kasai PH, Jones PM (1985) J Am Chem Soc 107:813

    Google Scholar 

  5. Chenier JHB, Hampson CA, Howard JA, Mile B (1989) J Phys Chem 93:114

    Google Scholar 

  6. Castro M, Salahub DR, Fournier R (1994) J Chem Phys 100:8233

    Google Scholar 

  7. Villalta PW, Fenn PT, Leopold DG (1994) Proc SPIE, vol 2124: 325; and Leopold DG, private communication

    Google Scholar 

  8. Andzelm J, Wimmer E (1992) J Chem Phys 96:1280

    Google Scholar 

  9. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B46:6671

    Google Scholar 

  10. Becke AD (1992) J Chem Phys 96:2155; J Chem Phys (1992) 97:9173; J Chem Phys (1993) 98:5648

    Google Scholar 

  11. Deng L, Ziegler T, Fan L (1993) J Chem Phys 99:3823

    Google Scholar 

  12. Zhu T, Lee C, Yang W (1993) J Chem Phys 98:4814

    Google Scholar 

  13. Johnson BG, Gill PMW, Pople JA (1993) J Chem Phys 98:5612

    Google Scholar 

  14. Dickson RM, Becke AD (1993) J Chem Phys 99:3898

    Google Scholar 

  15. Malkin VG, Malkina OL, Salahub DR (1993) Chem Phys Lett 204:80; Chem Phys Lett 204:87

    Google Scholar 

  16. Colwell SM, Murray CW, Handy NC, Amos RD (1993) Chem Phys Lett 210:261

    Google Scholar 

  17. Eriksson L, Malkina OL, Malkin VG, Salahub DR (1994) J Chem Phys 100:5066

    Google Scholar 

  18. Verluis L, Ziegler T (1988) J Chem Phys 88:322; Fournier R, Andzelm J, Salahub DR (1989) J Chem Phys 90:6371; Dunlap BI, Andzelm J, Mintmire JW (1990) Phys Rev A 42:6354; Delley B (1991) J Chem Phys 94:7245

    Google Scholar 

  19. Berces A, Ziegler T (1993) J Chem Phys 98:4793

    Google Scholar 

  20. Fan L, Verluis L, Ziegler T, Baerends EJ, Ravenek W (1988) Int J Quantum Chem S22: 173

    Google Scholar 

  21. Fan L, Ziegler T (1992) J Phys Chem 96:6937

    Google Scholar 

  22. Pápai I, St-Amant A, Ushio J, Salahub DR (1990) Int J Quantum Chem Symp 24:29

    Google Scholar 

  23. Pápai I, Mink J, Fournier R, Salahub DR (1993) J Phys Chem 97:9986

    Google Scholar 

  24. Mitchell SA, Blitz MA, Fournier R (1994) Can J Chem 72:587

    Google Scholar 

  25. Brown CE, Mitchell SA, Hackett PA (1992) Chem Phys Lett 191:175

    Google Scholar 

  26. Mitchell SA (1992) In: Fontijn A (ed) Gas-phase metal reactions. Elsevier, Amsterdam, pp 227–252

    Google Scholar 

  27. Mitchell SA, Blitz MA, Siegbahn PEM, Svensson M (1994) J Chem Phys 100:423

    Google Scholar 

  28. Fournier R (1993) J Chem Phys 99:1801

    Google Scholar 

  29. Fournier R (1994) Int J Quantum Chem 52:973

    Google Scholar 

  30. Park MA (1988) PhD thesis, Rice University

  31. Park MA, Hauge RH, Margrave JL (1988) High Temp Sci 25:1

    Google Scholar 

  32. Salahub DR, Fournier R, Mlynarski P, Papai I, St-Amant A, Ushio J (1991) In: Proc Ohio supercomputer center workshop on the theory and applications of density functional theory to chemistry. Labanowsky J, Andzelm J (eds) Springer, New York

    Google Scholar 

  33. St-Amant A, Salahub DR (1990) Chem Phys Lett 169:387; St-Amant A (1992) Thèse de doctorat, Université de Montréal

  34. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Google Scholar 

  35. Becke AD (1988) Phys Rev A38:3098

    Google Scholar 

  36. Perdew JP (1986) Phys Rev B33:8822

    Google Scholar 

  37. Blomberg MRA, Brandemark UB, Siegbahn PEM (1986) Chem Phys Lett 126:317

    Google Scholar 

  38. Becke AD (1988) J Chem Phys 88:2547

    Google Scholar 

  39. Jones RS, Mintmire JW, Dunlap BI (1988) Int J Quantum Chem Symp 22:77

    Google Scholar 

  40. Jansen HB, Ros P (1969); Chem Phys Lett 3:140; Boys SF, Bernardi F (1970) Mol Phys 19:553; Gutowski M, Chałasiński G (1993) J Chem Phys 98:5540; Davidson ER, Chakravorty SJ (1994) Chem Phys Lett 217:48 (1994)

    Google Scholar 

  41. Goursot A, Pápai I, Daul CA (1994) Int. J Quantum Chem 52:799

    Google Scholar 

  42. Shimanouchi T (1977) Tables of molecular vibrational frequencies I, Publication NSRDS-NBS 39, National Bureau of Standards, Washington DC; Shimanouchi T, Tables of molecular vibrational frequencies II, J Phys Chem Ref Data 6:993

    Google Scholar 

  43. Blomberg MRA, Brandemark UB, Siegbahn PEM, Mathisen KB, Karlström G (1985) J Phys Chem 89:2171

    Google Scholar 

  44. Bauschlicher CW Jr (1986) J Chem Phys 84:260

    Google Scholar 

  45. Bauschlicher CW Jr (1987) Chem Phys Lett 142:71

    Google Scholar 

  46. Sunderlin LS, Wang D, Squires RR (1992) J Am Chem Soc 114:2788

    Google Scholar 

  47. We use six CGd orbitals:xx, xy, xz, yz, andzz. The population of these orbitals in a closed d shell are 1 1/3, 2, 2, 1 1/3, 2, and 1 1/3, respectively

  48. Siegbahn PEM, Blomberg MRA, Svensson M (1993) J Phys Chem 97:2564

    Google Scholar 

  49. Bauschlicher CW Jr, Langhoff SR, Partridge H (1986) J Chem Phys 84:901; Bauschlicher CW Jr (1986) Int J Quantum Chem S20:563

    Google Scholar 

  50. Ball DW, Hauge RH, Margrave JL (1988) High Temp Sci 25:95

    Google Scholar 

  51. Park et al. did assign some bands (3680, 1785 and 631 cm−1) to HNiOH(H2O) but did not consider the possibility of a second isomer of HNiOH(H2O)

  52. In general, the barrier to metal insertion in bonds increase in that order: H-H, C-H, C-C [1]. This has been rationalized from the directional nature of C-X bonds as follows (see Ref. [1] and references therein). The necessary distortion of the bonds around the carbon atom away from tetrahedral arrangement, which is needed to reach the transition state, is very unfavourable energetically. This energy cost is lower for C-H bonds than for C-C bonds — and is still lower for the H-H bond — because a H atom is spherical and can bind both to the metal and the other R group more effectively than can a methyl group. Using that same idea, we expect the barrier to insertion in a O-C bond to be larger than that for insertion in a O-H bond.

  53. Fan L, Ziegler T (1990) J Chem Phys 92:3645

    Google Scholar 

  54. Burghgraef H, Jansen APJ, van Santen RA (1993) J Chem Phys 98:8810

    Google Scholar 

  55. Abashkin Y, Russo N (1994) J Chem Phys 100:4477

    Google Scholar 

  56. Stanton RV, Merz KM Jr (1994) J Chem Phys 100:434

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fournier, R. Association and insertion complexes of nickel with water and methanol studied using Kohn-Sham theory. Theoret. Chim. Acta 91, 129–146 (1995). https://doi.org/10.1007/BF01114981

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01114981

Key words

Navigation