Skip to main content
Log in

Pyruvate kinase and alanine synthesis in skeletal muscle

  • Published:
Bioscience Reports

Abstract

L-Phenylalanine is an allosteric inhibitor of M1-type pyruvate kinase. Accordingly, the effects were studied of 20 mM phenylalanine on the metabolism of 5 mM [U-14C]glucose and 3 mM L-[U-14C]glutamate by isolated hemidiaphragms from starved rats. Phenylalanine inhibited lactate and14CO2 production from both substrates and stimulated alanine release. It is concluded that pyruvate kinase may have a dual role in intermediary metabolism in skeletal muscle: the enzyme is a component of the lower glycolytic pathway and is implicated in a pathway of amino acid oxidation and alanine synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bücher T & Pfleiderer G (1955) inMethods in Enzymology, vol 1 (Colowick, SP & Kaplan NO, eds), pp 435–440, Academic Press, New York.

    Google Scholar 

  • Carminatti H, Jiménez de Asúa L, Leiderman B & Rozengurt E (1971) J. Biol. Chem.246, 7284–7288.

    PubMed  Google Scholar 

  • Carbonell J, Felui JE, Marco R & Sols A (1973) Eur. J. Biochem.37, 148–156.

    PubMed  Google Scholar 

  • Connett RJ (1979) Am. J. Physiol.237, C231–236.

    PubMed  Google Scholar 

  • Czot R & Lamprecht W (1974) inMethods in Enzymatic Analysis (Bergmeyer HU, ed), pp 1446–1451, Verlag Chemie, Weinheim, and Academic Press, London.

    Google Scholar 

  • Dagley S (1974) inMethods in Enzymatic Analysis (Bergmeyer HU, ed), pp 1562–1565, Verlag Chemie, Weinheim, and Academic Press, London.

    Google Scholar 

  • Gevers W & Dowdle E (1963) Clin. Sci.25, 343–349.

    PubMed  Google Scholar 

  • Goldstein L & Newsholme EA (1976) Biochem. J.154, 555–558.

    PubMed  Google Scholar 

  • Gutmann I & Wahlefeld AW (1974) inMethods in Enzymatic Analysis (Bergmeyer HU, ed), pp 1464–1468, Verlag Chemie, Weinheim, and Academic Press, London.

    Google Scholar 

  • Halestrap AP & Denton RM (1974) Biochem. J.138, 313–316.

    PubMed  Google Scholar 

  • Hall ER & Cottom GL (1978) Int. J. Biochem.9, 785–793.

    PubMed  Google Scholar 

  • Kostos V, DiTullio NW, Rush J, Cielinski L & Saunders HL (1975) Arch. Biochem. Biophys.171, 459–465.

    PubMed  Google Scholar 

  • MacDonald MJ, Huang M-T & Lardy HA (1978) Biochem. J.176, 495–504.

    PubMed  Google Scholar 

  • Odedra BR & Palmer TN (1981) Biosci. Rep.1, 157–165.

    PubMed  Google Scholar 

  • Palmer TN & Odedra BR (1982) Biosci. Rep.2, 825–833

    PubMed  Google Scholar 

  • Rennie MJ & Edwards RHT (1981) inCarbohydrate Metabolism and Its Disorders (Randle PJ, Steiner DH & Whelan WJ, eds), pp 1–118, Academic Press, London.

    Google Scholar 

  • Snell K (1980) Biochem. Soc. Trans.8, 205–213.

    PubMed  Google Scholar 

  • Snell K & Duff DA (1977) Biochem J.162, 399–403.

    PubMed  Google Scholar 

  • Snell K & Duff DA (1980) Biochem. Soc. Trans.8, 501–504.

    PubMed  Google Scholar 

  • Sugden PH (1980) FEBS Lett.114, 127–131.

    PubMed  Google Scholar 

  • Williamson DH (1974) inMethods in Enzymatic Analysis (Bergmeyer HU, ed), pp 1679–1682, Verlag Chemie, Weinheim, and Academic Press, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, T.N., Caldecourt, M.A. & Slavin, J.P. Pyruvate kinase and alanine synthesis in skeletal muscle. Biosci Rep 2, 941–948 (1982). https://doi.org/10.1007/BF01114901

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01114901

Keywords

Navigation