Skip to main content
Log in

Viroid RNA is accepted as a template for in vitro transcription by DNA-dependent DNA polymerase I and RNA polymerase fromEscherichia coli

  • Published:
Bioscience Reports

Abstract

The RNA genome of potato spindle tuber viroid (PSTV) is transcribed in vitro into complementary DNA and RNA by DNA-dependent DNA polymerase I and RNA polymerase, respectively, fromEscherichia coli . In vitro synthesis of complementary RNA produces distinct transcripts larger than unit length thus reflecting the in vivo mechanism of viroid replication. The influence of varying experimental conditions on the transcription process is studied; actinomycin D is found to drastically reduce complementary RNA synthesis from the PSTV RNA template by RNA polymerase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diener TO (1979)Viroids and Viroid Diseases, John Wiley and Sons, New York.

    Google Scholar 

  2. Sänger HL, Klotz G, Riesner D, Gross HJ & Kleinschmidt AK (1976) Proc. Natl. Acad. Sci. U.S.A.73, 3852–3856.

    PubMed  Google Scholar 

  3. Gross HJ & Riesner D (1980) Angew. Chem. (Intern. ed)19, 231–243.

    Google Scholar 

  4. Riesner D, Henco K, Rokohl U, Klotz G, Kleinschmidt AK, Gross HJ, Domdey H & Sänger HL (1979) J. Mol. Biol.133, 85–115.

    PubMed  Google Scholar 

  5. Rackwitz HR, Rohde W & Sänger HL (1981) Nature291, 297–301.

    PubMed  Google Scholar 

  6. Mühlbach H-P & Sänger HL (1981) Nature278, 185–188.

    Google Scholar 

  7. Grill LK, Negruk UI & Semancik JS (1980) Virology107, 24–33.

    Google Scholar 

  8. Rohde W & Sänger HL (1981) Biosci. Rep.1, 327–336

    PubMed  Google Scholar 

  9. Zaitlin M, Niblett CL, Dickson E & Goldberg RB (1980) Virology104, 1–9.

    Google Scholar 

  10. Branch AD & Dickson E (1980) Virology104, 10–26.

    Google Scholar 

  11. Hadidi A, Cress DE & Diener TO (1981) Proc. Natl. Acad. Sci. U.S.A.78, 6932–6935.

    PubMed  Google Scholar 

  12. Halbreich A, Pajot P, Foucher M, Grandchamp C & Slonimski P (1980) Cell19, 321–329.

    PubMed  Google Scholar 

  13. Borst P & Grivell LA (1981) Nature289, 439–440.

    PubMed  Google Scholar 

  14. Diener TO (1981) Proc. Natl. Acad. Sci. U.S.A.78, 5014–5015.

    Google Scholar 

  15. Dickson E (1981) Virology115, 216–221.

    PubMed  Google Scholar 

  16. Crick F (1979) Science204, 264–271.

    PubMed  Google Scholar 

  17. Drummond M (1979) Nature281, 343–347.

    Google Scholar 

  18. Van Montagu M & Schell J (1982) Curr. Top. Microbiol. Immunol.96, 236–254.

    Google Scholar 

  19. Willmitzer L, Schmalenbach W & Schell J (1981) Nucl. Acids Res.9, 4801–4812.

    PubMed  Google Scholar 

  20. Sassoni-Corsi P, Corden J, Kédinger C & Chambon P (1981) Nucl. Acids Res.9, 3941–3958.

    PubMed  Google Scholar 

  21. Rohde W, Schnölzer M, Rackwitz HR, Haas B, Seliger H & Sänger HL (1981) Eur. J. Biochem.118, 151–157.

    PubMed  Google Scholar 

  22. Rohde W, Schnölzer M & Sänger HL (1981) FEBS Lett.130, 208–212.

    PubMed  Google Scholar 

  23. Maxam AM & Gilbert W (1977) Proc. Natl. Acad. Sci. U.S.A.74, 560–564.

    PubMed  Google Scholar 

  24. Peattie DA (1979) Proc. Natl. Acad. Sci. U.S.A.76, 1760–1764.

    PubMed  Google Scholar 

  25. Sänger HL, Ramm K, Domdey H, Gross HJ, Henco K & Riesner D (1979) FEBS Lett.99, 117–122.

    Google Scholar 

  26. Sugiura M & Miura K (1977) Eur. J. Biochem.73, 179–184.

    PubMed  Google Scholar 

  27. Lathe R (1978) Curr. Top. Microbiol. Immunol.83, 38–91.

    Google Scholar 

  28. Camacho A & Sänger HL (1982) Arch. Virol., in press.

  29. Alwine JC, Kemp DJ & Stork GR (1977) Proc. Natl. Acad. Sci. U.S.A.74, 5350–5354.

    PubMed  Google Scholar 

  30. Branch AD, Robertson HD & Dickson E (1981) Proc. Natl. Acad. Sci. U.S.A.78, 6381–6385.

    Google Scholar 

  31. Owens RA & Diener TO (1982) Proc. Natl. Acad. Sci. U.S.A.79, 113–117.

    Google Scholar 

  32. Pogo AD, Littan UC, Allfrey VG & Mirsky AE (1967) Proc. Natl. Acad. Sci. U.S.A.57, 743–750.

    Google Scholar 

  33. Boege F, Rohde W & Sänger HL (1982) Biosci. Rep.2, 185–194.

    PubMed  Google Scholar 

  34. Falchuk KH, Hardy C, Ulpino L & Vallee BL (1978) Proc. Natl. Acad. Sci. U.S.A.75, 4175–4179.

    PubMed  Google Scholar 

  35. Diener TO & Smith DR (1975) Virology63, 421–427.

    PubMed  Google Scholar 

  36. Takahashi T & Diener TO (1975) Virology64, 106–114.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohde, W., Rackwitz, HR., Boege, F. et al. Viroid RNA is accepted as a template for in vitro transcription by DNA-dependent DNA polymerase I and RNA polymerase fromEscherichia coli . Biosci Rep 2, 929–939 (1982). https://doi.org/10.1007/BF01114900

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01114900

Keywords

Navigation