Skip to main content
Log in

Semiempirical study of electronic and bonding properties of iron silicide clusters

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

Molecular orbital calculations of iron, silicon, and iron silicide clusters have been carried out using the UHF-MINDO/SR method. The nature of the bonding in these compounds has been investigated by analyzing the importance of bonding indexes and diatomic components of the total energy. It has been found that in iron silicide the strongest bond is formed between Fe-Si and that it arises mainly as the result ofsp-sp type orbital interactions. Althoughd orbitals show very little overlap withs-p orbitals, they do contribute significantly to bonding through electrostatic type diatomic interactions. By means of a detailed analysis ofsp, andd orbitals and total density of states (DOS) of Fe7Si7, Si7Fe7, Fe15, and Si17 clusters, the present calculations have permitted us to explain the origin of the iron silicide UPS experimental peaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Egert B, Panzner G (1984) Phys Rev B: Solid State 29:2091

    Google Scholar 

  2. Nemoshkalenko VV, Zakharov AI, Aleshin VG, Matveev YA (1977) Theor Exp Chem 13:529

    Google Scholar 

  3. Sergushin NP, Shabanova IN, Kolobova KM, Trapeznikov VA, Nefedov VI (1973) Fiz Metal Metalloved 35:947

    Google Scholar 

  4. Oh SJ, Allen JW, Lawrence JM (1987) Phys Rev B: Solid State 35:2267

    Google Scholar 

  5. Kohgi M, Ishikawa Y (1981) Solid State Comm 37:833

    Google Scholar 

  6. Kakizaki A, Sugawara H, Nagakura I, Ishikawa Y, Komatsubara T, Ishii T (1982) J Phys Soc. Japan 51:2597

    Google Scholar 

  7. Zhu Q, Iwasaki H, Williams ED, Park RL (1986) J Appl Phys 60:2692;

    Google Scholar 

  8. Ballesteros A, Rojas CE, Castro GR (1987) In: Castro GR, Cardona M (eds) Lectures in Surface. Science. Springer, Berlin Heildelberg New York

    Google Scholar 

  9. Wertheim GK, Jaccarino V, Wernick JH, Seitchik JA, Williams HJ, Sherwood RC (1965) Phys Letters 18:89;

    Google Scholar 

  10. Evangelou SN, Edwards DM (1983) J Phys C: Solid State Phys 16:2121;

    Google Scholar 

  11. Klimker H, Perz JM, Svechkarev IV, Dolgopolov DG (1986) J Mag Mag Materials 62:339;

    Google Scholar 

  12. Kvardakov VV, Podurets KM, Chistyakov RR, Shilshtein SS, Elyutin NO, Kulidzhanov FG, Bradler J, Kadeckova S (1987) Sov Phys Sol State 29:228;

    Google Scholar 

  13. Shirane G, Fischer JE, Endoh Y, Tajima K (1987) Phys Rev Letters 59:351

    Google Scholar 

  14. Nikitin EN, Tarasov VI (1971) Sov Phys Cryst 16:305;

    Google Scholar 

  15. Panfilov AS (1985) Sov Phys Semicond 19:1159

    Google Scholar 

  16. Rodríguez LJ, Ruette F, Ludeña EV, Castro GR, Henández AJ (1987) In: Castro GR, Cardona M (eds) Lectures in Surface Science. Springer, Berlin Heidelberg New York

    Google Scholar 

  17. Blyholder G, Head J, Ruette F (1982) Theor Chim Acta 60:429

    Google Scholar 

  18. Bingham RC, Dewar MJS, Lo DH (1975) J Am Chem Soc 97:1285

    Google Scholar 

  19. Head J, Blyholder G, Ruette F (1982) J Comp Phys 45:255

    Google Scholar 

  20. Blyholder G, Head J, Ruette F (1983) Surface Sci 131:403; Ruette F, Blyholder G, Head J (1984) Surface Sci 137:491

    Google Scholar 

  21. Ruette F, Blyholder G, Head J (1984) J Chem Phys 80:2042

    Google Scholar 

  22. Ruette F, Hernández AJ, Ludeña EV (1985) Surface Sci 151:103

    Google Scholar 

  23. Ruette F, Ludeña EV, Hernández AJ (1986) Int J Quantum Chem XXIX:1351

    Google Scholar 

  24. Ruette F, Ludeña EV, Hernández AJ, Castro GR (1986) Surface Sci 167:393

    Google Scholar 

  25. Ruette G, Blyholder G (1988) Theor Chim Acta 74:137

    Google Scholar 

  26. Rosen B (1970) Spectroscopic data relative to diatomic molecules. Pergamon Press, Oxford New York

    Google Scholar 

  27. Edwards AH, Fowler WB (1985) J Phys Chem Solids 46:841; ibid. (1982) Phys Rev B26:6649; Cuthbertson AF, Glidewell C (1981) Inorganic Chim Acta 49:91

    Google Scholar 

  28. Gingerich KA (1980) In: Kadis E (ed) Current topics in materials science, vol 6, Chap 5. Elsevier/North-Holland, Amsterdam New York, p 345

    Google Scholar 

  29. Simonetta M, Gavezzotti A (1980) In: Lowdin P (ed) Advances in quantum chemistry, vol 12. Academic Press, New York, p 103

    Google Scholar 

  30. Pople, J. A. Beveridge, D. L. (1970) Approximate molecular orbital theory. Pergamon Press, New York

    Google Scholar 

  31. Moffat JB, Tang KF (1975) J Phys Chem 79:654

    Google Scholar 

  32. Hansen M (1958) Constitution of binary alloys. McGraw-Hill, New York

    Google Scholar 

  33. Pauling L, Soldate AM (1948) Acta Cryst 1:212

    Google Scholar 

  34. Fliszár S (1983) Charge distributions and chemical effects. Springer, Berlin Heidelberg New York, p 27;

    Google Scholar 

  35. Slee TS (1986) J Am Chem Soc 108:7541

    Google Scholar 

  36. Shim I, Gingerich KA (1982) J Chem Phys 77:2490;

    Google Scholar 

  37. Morse MD, Hansen GP, Landridge-Smith PRR, Zheng LS, Geusic ME, Michalopoulos DL, Smalley RE (1984) J Chem Phys 80:5400

    Google Scholar 

  38. Skinner A, Pilcher B (1963) Quart Rev 17:264;

    Google Scholar 

  39. Kittel C (1971) Introduction of solid state physics. Wiley, New York, p 96

    Google Scholar 

  40. Goldschmidt HJ (1967) Interstitial alloys. Butterworths, London

    Google Scholar 

  41. Lau SS, Feng JSY, Olowolafe JO, Nicolet MA (1975) Thin Solid Films 25:415

    Google Scholar 

  42. Bisi O, Calandra C (1981) J Phys C: Solid State Phys 14:5479;

    Google Scholar 

  43. Abbati I, Braicovich L, De Michelis B, Bisi O, Rovetta R (1981) Solid State Comm 37:119

    Google Scholar 

  44. Clementi E, Roetti C (1974) Atomic data and nuclear tables. Academic Press, New York London

    Google Scholar 

  45. Blyholder G, Lawless M (1987) Prog Surf Science 26:181;

    Google Scholar 

  46. Blyholder G, Lawless M (1989) J Am Chem Soc 111:1275

    Google Scholar 

  47. Tavil RA, Callaway J (1973) Phys Rev B 7:4242

    Google Scholar 

  48. Demuynck RC, Rohmer MM, Strich A, Veillard A (1981) J Chem Phys 75:3443;

    Google Scholar 

  49. Basch H, Newton MD, Moskowitz JW (1980) J Chem Phys 73:4492

    Google Scholar 

  50. Rodríguez JA, Campbell CT (1987) J Phys Chem 91:2161;

    Google Scholar 

  51. Rodríguez JA, Campbell CT (1987) Surface Sci 183:449

    Google Scholar 

  52. MONSTERGAUSS (1981) Peterson MR, Poirier RA, Department of Chemistry, University of Toronto, Canada

  53. Rodríguez LJ, Ruette F, Ludeña EV, Castro GR, Hernández A (1987) In: Castro GR, Cardona M (eds) Lectures in Surface Science. Springer, Berlin Heidelberg New York, p 132

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, L.J., Ruette, F., Castro, G.R. et al. Semiempirical study of electronic and bonding properties of iron silicide clusters. Theoret. Chim. Acta 77, 39–56 (1990). https://doi.org/10.1007/BF01114651

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01114651

Key words

Navigation