Skip to main content
Log in

35Cl NQR investigation of intramolecular interactions in trichlorophosphazo and dichlorosulfimino derivatives

  • Published:
Theoretical and Experimental Chemistry Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. K. A. R. Mitchell, “The use of outer d orbitals in bonding, “Chem. Rev.,69, No. 2, 157–178 (1969).

    Google Scholar 

  2. T. W. Ku and D. Swern, “Iminosulfuranes from biologically active sulfonamides and related compounds,” Phosphorus and Sulfur,7, No. 2, 195–201 (1979).

    Google Scholar 

  3. A. S. Tarasevich, V. V. Pen'kovskii, and Yu. P. Egorov, “Study of the electronic structure of Phosphazo compounds by the CNDO/2 method, ”Teor. Eksp. Khim., 13, No. 5, 589–598 (1977).

    Google Scholar 

  4. Yu. A. Nuzhdina, Yu. P. Egorov, N. Ya. Derkach, N. A. Pasmurtseva, and T. V. Lyapina, “IR spectra and nature of intramolecular interactions in certain selenium-containing compounds,” Teor. Eksp. Khim.,10, No. 4, 473–479 (1974).

    Google Scholar 

  5. I. N. Zhmurova, V. G. Yurchenko, R. I. Yurchenko, E. V. Konovalov, and Yu. P. Egorov, “Mutual influence of substituents in triarylphosphazobenzenes,” Zh. Obshch. Khim.,44, No. 11, 2413–2418 (1974).

    Google Scholar 

  6. Yu. P. Egorov and T. G. Zabolotnaya, “Intramolecular electronic effects in derivatives of N-substituted iminosulfinic acids,” Teor. Eksp. Khim.,15, No. 3, 265–272 (1979).

    Google Scholar 

  7. G. K. Semin, T. A. Babushkina, and G. G. Yakobson, The Use of NQR in Chemistry [in Russian], Khimiya, Leningrad (1972).

    Google Scholar 

  8. W. Gordy, “Quadrupole couplings, dipole moments, and the chemical bond,” Disc. Farad. Soc., No. 19, 14–29 (1955).

    Google Scholar 

  9. M. Kaplansky and M. A. Whitehead, “The s-character of chlorine σ-orbitals in molecules determined from NQR data and BEEM,” Mol. Phys.,16, No. 5, 481–490 (1969).

    Google Scholar 

  10. E. A. Romanenko, M. I. Povolotskii, N. G. Pavlenko, and Yu. P. Egorov, “Investigation of the structure and conductivity of the monophosphazene unit of phosphazodicyanoethylenes by the35Cl NQR method,” Teor. Eksp. Khim.,14, No. 6, 834–838 (1978).

    Google Scholar 

  11. É. S. Kozlov, C. N. Gaidamaka, M. I. Povolotskii, I. A. Kyuntsel', V. A. Mokeeva, and G. B. Soifer, “31P NMR and35Cl NQR spectra of monomeric trichlorophosphazoalkanes,” Zh. Obshch. Khim.,48, No. 6, 1263–1266 (1978).

    Google Scholar 

  12. I. A. Kyuntsel', V. A., Mokeeva, G. B. Soifer, É. S. Kozlov, and M. I. Povolotskii, “35Cl NQR spectra of trichloropho'sphazo compounds and the problem of rotation around the P=N bond,” Zh. Obshch. Khim.,45, No. 8, 1989–1993 (1975).

    Google Scholar 

  13. E. A. Romanenko and M. I. Povolotskii “The35Cl NQR spectra and reorientation of the mobility of the PCl3 groups in trichlorophosphazo compounds,” Teor. Eksp. Khim.,13, No. 1, 70–76 (1977).

    Google Scholar 

  14. M. Kaplansky, R. Clipsham, and M. Whitehead, “35Cl NQR in inorganic molecules containing phosphorus and sulfur,” J. Chem. Soc., A, No. 4, 584–588 (1969).

    Google Scholar 

  15. R. M. Hart and M. A. Whitehead, “Chlorine nuclear quadrupole resonance spectrum of trichlorophosphazosulfuryl chloride,” Mol. Phys.,19, No. 3, 385–387 (1970).

    Google Scholar 

  16. M. A. Whitehead, “35Cl pure quadrupole resonance frequencies in the cyclic phosphanitrilic chloride polymers,” Can. J. Chem.,42, No. 4, 1212–1225 (1964).

    Google Scholar 

  17. R. Clipsham, R. M. Hart, and M. A. Whitehead, “Preparation and NQR interpretation of the structure of cyclo-tri-m-nitrido-dichlorophosphorus-bis(oxo-chlorosulfur),” Inorg. Chem.,8, No. 11, 2431–2436 (1969).

    Google Scholar 

  18. E. A. Romanenko, Yu. P. Egorov, and P. P. Kornuta, “NQR and structural pecularities of substituted phosphapyrimidine,” Teor. Eksp. Khim.,9, No. 5, 635–641 (1973).

    Google Scholar 

  19. E. I. Pustyl'nik, Statistical Methods of Analysis and Treatment of Observations [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  20. G. Schott, “Uber Substituenten-Konstanten,” Z. Chem.,6, No. 9, 321–329 (1966).

    Google Scholar 

  21. C. Y. Meyers, B. Cremonini, and L. Maioli, “Electronic effects of the sulfonyl groups in aromatic systems. Relationships between inductive and d-orbital resonance contributions,” J. Amer. Chem. Soc.,86, No. 14, 2944–2945 (1964).

    Google Scholar 

  22. T. V. Kashik, B. V. Prokop'ev, A. S. Atavin, A. N. Mirskova, M. L. Al'pert, T. V. Pil'kevich, and S. M. Ponomareva, “Investigation of the dissociating ability of chloralamides of carboxylic acids in nonaqueous media,” Zh. Org. Khim.,7, No. 8, 1582–1586 (1971).

    Google Scholar 

  23. G. P. Vdovin and Yu. P. Egorov, “First ionization potentials of aromatic molecules containing perfluoralkyl substituants,” Teor. Eksp. Khim.,13, No. 3, 399–404 (1977).

    Google Scholar 

  24. L. S. Levitt, “Relations between σI, σ*, p, and p* for H and alkyl groups; σ1 values from the site and branching of R,” Z. Naturforsch,34, 81–85 (1979).

    Google Scholar 

  25. Yu. A. Zhdanov and V. I. Minkin, Correlation Analysis in Organic Chemistry [in Russian], Izd. Rostov Univ., Rostov-on-Don (1966).

    Google Scholar 

  26. W. A. Sheppard and R. M. Herderson, “Electronic effects of cyanocarbon groups,” J. Am. Chem. Soc.,89, No. 17, 4446–4450 (1967).

    Google Scholar 

  27. T. A. Modro, “Substituent effects of phosphorus-containing groups of aromatic reactivity. Determination of substituent constants by13C NMR spectroscopy,” Can. J. Chem.,55, No. 21, 3681–3685 (1977).

    Google Scholar 

  28. R. P. Smith, T. Ree, J. L. Magee, and H. Eyring, “The inductive effect and chemical reactivity. I. General theory of the inductive effect and application to electric dipole moment of haloalkanes,” J. Am. Chem. Soc.,73, No. 10, 2263 (1951).

    Google Scholar 

  29. V. A. Pal'm, Fundamentals of the Quantitative Theory of Organic Reactions [in Russian], Khimiya, Leningrad (1967).

    Google Scholar 

  30. L. M. Litvinenko, R. S. Popova, and A. F. Popov, “Reactivity and electronic conductivity in a series of binuclear bridge systems,” Usp. Khim.,44, No. 9, 1593–1619 (1975).

    Google Scholar 

  31. L. F. Kasukhin, M. P. Ponomarchuk, and Yu. G. Gololobov, “Evaluation of the electronic properties of substituents at the phosphorus by a kinetic method,” Teor. Eksp. Khim.,14, No. 5, 652–660 (1978).

    Google Scholar 

  32. E. A. C. Lucken and M. A. Whitehead, “The transmission of the electronic effect of various substituents by a phosphorus atom,” J. Chem. Soc., No. 6, 2459–2463 (1961).

    Google Scholar 

  33. R. Keat, A. L. Porte, and D. A. Tong, “A correlation between P-Cl bond lengths and35Cl NQR frequencies in some cyclophosphazenes; the use of35Cl NQR spectroscopy for structural assignment in cyclodiphosphazenes,” J. Chem. Soc., Dalton Trans., No. 13, 1648–1651 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 17, No. 1, pp.52–58, January–February, 1981.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egorov, Y.P., Povolotskii, M.I. 35Cl NQR investigation of intramolecular interactions in trichlorophosphazo and dichlorosulfimino derivatives. Theor Exp Chem 17, 40–45 (1981). https://doi.org/10.1007/BF01114427

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01114427

Keywords

Navigation