Skip to main content
Log in

D.c. galvanomagnetic properties in a heavily compensated single crystal of n-type CdTe

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Experimental data on d.c. galvanomagnetic properties, namely the Hall coefficientR H, the low-electric-field d.c. conductivityσ and the Hall mobilityμ H, in a heavily compensated single crystal of n-type CdTe in the temperature range 77 to 300 K have been analysed, firstly on the basis of a simple one-band model involving normal free-electron conduction, and secondly on the basis of a two-band model involving normal free-electron conduction along with impurity-band conduction. The analysis provides evidence for a significant contribution of impurityband conduction to the transport phenomena at temperatures below ∼ 150 K. This conclusion is further substantiated by transverse magnetoresistance measurements and the observed dependence of d.c. conductivity on the electric field. From the analysis of these data, the average hopping distanceR in the impurity band is calculated, and it is found to increase with decrease of temperature. The relative contributions of normal free-electron conduction and impurity-band conduction to the d.c. galvanomagnetic properties are estimated at different temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Strass,Rev. Phys. Appl. 12 (1977) 167.

    Google Scholar 

  2. K. Zanio, in “Cadmium Telluride” (Academic Press, New York, 1978) p. 164.

    Google Scholar 

  3. F. V. Wald,Rev. Phys. Appl. 12 (1977) 277.

    Google Scholar 

  4. F. A. Shirland,Adv. Energy Conv. 6 (1966) 201.

    Google Scholar 

  5. L. R. Shiozawa, F. Augustine, G. A. Sullivan, J. M. Smith andW. R. Cole, Aerospace Research Laboratory Contract Report ARL 69-0155 (USAF Wright-Patterson Air Force Base, Ohio, 1969).

    Google Scholar 

  6. G. Entine, M. R. Squillante, H. B. Serreze andE. Clarke,IEEE Trans. Nucl. Sci. NS-28 (1981) 558.

    Google Scholar 

  7. A. J. Tavendale andE. M. Lawson,Atom. Energy Aust. 21 (1978) 19.

    Google Scholar 

  8. A. M. Andrews andC. R. Haden,Proc. IEEE 57 (1969) 99.

    Google Scholar 

  9. J. Dresner andF. V. Shallcross,Solid State Electron. 5 (1962) 205.

    Google Scholar 

  10. M. Rodot,Rev. Phys. Appl. 12 (1977) 411.

    Google Scholar 

  11. D. Nobel,Philips Res. Rep. 14 (1959) 361.

    Google Scholar 

  12. S. Yamada,J. Phys. Soc. Jpn 17 (1962) 645.

    Google Scholar 

  13. B. Segall, M. R. Lorentz andR. E. Halsted,Phys. Rev. 129 (1963) 2471.

    Google Scholar 

  14. E. H. Putley, “The Hall Effect and Semiconductor Physics” (Dover, New York, 1960), Ch. 2.

    Google Scholar 

  15. B. R. Sethi, O. P. Sharma, P. K. Goyal andP. C. Mathur,J. Phys. C. 14 (1981) 1649.

    Google Scholar 

  16. S. Devlin, in “Physics and Chemistry of II–VI Compounds”, edited by M. Aven and J. S. Prener (North-Holland, Amsterdam, 1967), Ch. 11.

    Google Scholar 

  17. E. G. S. Paige in “Progress in Semiconductors”, Vol. 8, edited by A. F. Gibson and R. E. Burgen (Wiley, New York, 1964), p. 47.

    Google Scholar 

  18. D. T. F. Marple,Phys. Rev. 129 (1963) 2466.

    Google Scholar 

  19. H. Frohlich,Adv. Phys. 3 (1954) 325.

    Google Scholar 

  20. H. B. Collen,Phys. Rev. 76 (1948) 1394.

    Google Scholar 

  21. D. T. F. Marple,J. Appl. Phys. 35 (1964) 439.

    Google Scholar 

  22. I. Strzalkowski, S. Joshi andC. R. Crowell,Appl. Phys. Lett. 28 (1976) 350.

    Google Scholar 

  23. D. L. Rode,Phys. Rev. B2 (1970) 1012.

    Google Scholar 

  24. D. J. Howarth andE. H. Sondheimer,Proc. R. Soc. A219 (1953) 53.

    Google Scholar 

  25. H. Ehrenreich,J. Phys. Chem. Solids 8 (1959) 130.

    Google Scholar 

  26. H. Brooks,Adv. Electron. Electron Phys. 7 (1955) 156.

    Google Scholar 

  27. H. J. G. Meijer andD. Polder,Physica 19 (1953) 255.

    Google Scholar 

  28. W. A. Harrison,Phys. Rev. 101 (1956) 903.

    Google Scholar 

  29. A. R. Hutson,J. Appl. Phys. 32 (Suppl.) (1961) 2287.

    Google Scholar 

  30. J. Bardeen andW. Shockley,Phys. Rev. 80 (1950) 72.

    Google Scholar 

  31. H. J. McSkimin andD. J. Thomas,J. Appl. Phys. 33 (1962) 56.

    Google Scholar 

  32. D. G. Thomas,ibid. 32 (1961) 2298.

    Google Scholar 

  33. D. W. J. Langer, private communication (1965).

  34. N. F. Mott,Canad. J. Phys. 34 (1956) 1356.

    Google Scholar 

  35. E. M. Conwell,Phys. Rev. 103 (1956) 51.

    Google Scholar 

  36. A. Miller andE. Abrahams,Phys. Rev. 120 (1960) 745.

    Google Scholar 

  37. N. F. Mott andW. D. Twose,Adv. Phys. 10 (1961) 107.

    Google Scholar 

  38. N. F. Mott andE. A. Davis, “Electronic Processes in Non-Crystalline Materials” (Clarendon, Oxford, 1971) p. 104.

    Google Scholar 

  39. J. Frenkel,Phys. Rev. 54 (1938) 647.

    Google Scholar 

  40. R. M. Hill,Phil. Mag. 24 (1972) 1307.

    Google Scholar 

  41. N. F. Mott,ibid. 19 (1969) 835.

    Google Scholar 

  42. Idem, J. Non-Cryst. Solids 8/10 (1972) 1.

    Google Scholar 

  43. S. M. Ryvkin andI. S. Shlimak, in “Amorphous and Liquid Semiconductors”, edited by J. Stuke and W. Brenig (Taylor & Francis, London, 1974) p. 1155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulshreshtha, K.K., Goyal, P.K., Pandya, A. et al. D.c. galvanomagnetic properties in a heavily compensated single crystal of n-type CdTe. J Mater Sci 21, 2315–2321 (1986). https://doi.org/10.1007/BF01114273

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01114273

Keywords

Navigation