Theoretica chimica acta

, Volume 86, Issue 6, pp 497–510 | Cite as

SCF calculations on MIMD type parallel computers

  • A. Burkhardt
  • U. Wedig
  • H. G. v. Schnering


One of the key methods in quantum chemistry, the Hartree-Fock SCF method, is performing poorly on typical vector supercomputers. A significant acceleration of calculations of this type requires the development and implementation of a parallel SCF algorithm. In this paper various parallelization strategies are discussed comparing local and global communication management as well as sequential and distributed Fock-matrix updates. Programs based on these algorithms are bench marked on transputer networks and two IBM MIMD prototypes. The portability of the code is demonstrated with the portation of the initial Helios version to other operating systems like Parallel VM/SP and PARIX. Based on the PVM libraries, a platform-independent version has been developed for heterogeneous workstation clusters as well as for massively parallel computers.

Key words

Parallel MIMD SCF Massively parallel computers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    INMOS Ltd (1987) The Transputer Family 1987, INMOS Product InformationGoogle Scholar
  2. 2.
    Almlöf J, Faegri Jr K, Korsell K (1982) J Comp Chem 3:385Google Scholar
  3. 3.
    Almlöf J, Taylor PR (1984) Dykstra C (Ed.) Advanced theories and computational approaches to the electronic structure of molecules, NATO ASI Series 133:107, Reidel, DordrechtGoogle Scholar
  4. 4.
    Hey AJG (1989) Comp Phys Comm 56:1Google Scholar
  5. 5.
    Glendinning I, Hey AJG (1987) Comp Phys Comm 45:367Google Scholar
  6. 6.
    Guest MF, Harrison RJ, Lenthe JH van, Corler LCH van (1987) Theor Chim Acta 71:117Google Scholar
  7. 7.
    Dupuis M, Watts JD (1987) Theor Chim Acta 71:91Google Scholar
  8. 8.
    Gadre SR, Kulkarni SA, Limaye AC, Shirsat RN (1991) Z Phys D 18:357Google Scholar
  9. 9.
    Transputer Development System (D 700 C) Inmos Ltd BristolGoogle Scholar
  10. 10.
    Multitool 5.0 Parsytec GmbH, AachenGoogle Scholar
  11. 11.
    INMOS Ltd. (1988) Occam 2 Reference Manual, Prentice Hall International Series in Computer Science. Prentice Hall, LondonGoogle Scholar
  12. 12.
    McMurchie L, Elbert ST, Langhoff SR, Davidson ER et al. Program MELD, University of Washington, Seattle. Modified version Wedig UGoogle Scholar
  13. 13.
    Cooper MD, Hiller IH (1991) J Comput-Aided Mol Des 5:171Google Scholar
  14. 14.
    Wedig U, Burkhardt A, Schnering HG von (1989) Z Phys D 13:377Google Scholar
  15. 15.
    Perihelion Software Ltd (1989) The helios operating system. Prentice Hall, LondonGoogle Scholar
  16. 16.
    Wedig U, Burkhardt A, Schnering HG von (1990) Harms U (ed) Supercomputer and chemistry. Springer, BerlinGoogle Scholar
  17. 17.
    Harrison RJ, Kendall RA (1991) Theor Chim Acta 79:337Google Scholar
  18. 18.
    Harrison RJ (1991) Intl J Quantum Chem 40:847Google Scholar
  19. 19.
    Lüthi HP, Mertz JE, Feyereisen MW, Almlöf JE (1992) J Comput Chem 13:160Google Scholar
  20. 20.
    Brode S (1991) Harms U (ed) Supercomputers in Chemistry 2:61, Springer, BerlinGoogle Scholar
  21. 21.
    Ammann EM, Berbec RR, Bozman G, Faix M, Goldrian GA, Pershing JA, Ruvolo-Chong J, Scholz F (1991) IBM J Res Develop 35:653Google Scholar
  22. 22.
    PARIX Operating System, Parsytec GmbH, AachenGoogle Scholar
  23. 23.
    Geist A, Beguelin A, Dongarra J, Jiang W, Manchek R, Sunderam V (1993) PVM 3.0 User's Guide and Reference Manual, Oak Ridge National Laboratory, Oak Ridge TNGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • A. Burkhardt
    • 1
  • U. Wedig
    • 1
  • H. G. v. Schnering
    • 1
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgartGermany

Personalised recommendations