Theoretica chimica acta

, Volume 86, Issue 6, pp 477–485 | Cite as

Even-tempered Roothaan-Hartree-Fock wave functions for the third- and fourth-row atoms

  • Toshikatsu Koga
  • Hiroshi Tatewaki
  • Ajit J. Thakkar


Roothaan-Hartree-Fock wave functions composed of 12s8p6d, 12s10p6d, and 12s10p8d even-tempered (ET) Slater-type functions (STFs), respectively, are reported for the atoms K-Zn, Ga-Kr, and Rb-Xe in their ground state. Despite the limited variational freedom in the Et method, the resultant atomic energies are found to compare well with fully-optimized wave functions of similar sizes. In particular, the present ET results reproduce almost completely the fully-optimized Sekiya-Tatewaki energies with the same basis set size for the atoms K-Zn. All the present energies are also lower than the Clementi-Roetti ones with slightly smaller but fully-optimized basis sets. A generalized even-tempered scheme is suggested and shown to give good results for Xe.

Key words

Even-tempered wave functions Slater-type functions Third- and fourth-row atoms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roothaan CCJ (1951) Rev Mod Phys 23:69; (1960) 32:179; Roothaan CCJ, Bagus PS (1963) Methods Comput Phys 2:47Google Scholar
  2. 2.
    Clementi E (1965) Tables of atomic functions. Supplement to Clementi E (1965) IBM J Res Dev 9:2Google Scholar
  3. 3.
    Bagus PS, Gilbert TL, Roothaan CCJ (1972) Hartree-Fock wave functions of nominal accuracy for He through Rb+ calculated by the expansion method. Argonne Nat LabGoogle Scholar
  4. 4.
    Huzinaga S (1971, 1972, 1973) Approximate atomic functions. I, II, III. Univ of Alberta, CanadaGoogle Scholar
  5. 5.
    Raffenetti RC (1973) J Chem Phys 59:5936Google Scholar
  6. 6.
    Raffenetti RC, Ruedenberg K (1973) Even-tempered representation of atomic self-consistent field wave functions. Ames Lab, Iowa State UnivGoogle Scholar
  7. 7.
    Ruedenberg K, Raffenetti RC, Bardo RD (1973) in: Energy, structure, and reactivity. Proc 1972 Boulder summer research conference on theoretical chemistry, Wiley, NY, p 164–169Google Scholar
  8. 8.
    Clementi E, Roetti C (1974) At Data Nuc Data Tables 14:177Google Scholar
  9. 9.
    Garfield E (January 20, 1986) Current Contents, Issue 3, p 3Google Scholar
  10. 10.
    Froese-Fischer C (1977) The Hartree-Fock method for atoms. Wiley, NYGoogle Scholar
  11. 11.
    Huzinaga S, Klobukowski M (1985) Chem Phys Lett 120:509Google Scholar
  12. 12.
    Tatewaki H, Sekiya M (1986) J Chem Phys 85:5895Google Scholar
  13. 13.
    Sekiya M, Tatewaki H (1987) J Chem Phys 86:2891Google Scholar
  14. 14.
    Sekiya M, Tatewaki H (1987) Theor Chim Acta 71:149Google Scholar
  15. 15.
    Bunge CF, Barrientos JA, Bunge AV, Cogordan JA (1992) Phys Rev A 46:3691Google Scholar
  16. 16.
    Koga T, Tatewaki H, Thakkar AJ (1993) Phys Rev A, in pressGoogle Scholar
  17. 17.
    Koga T, Thakkar AJ (1993) Theor Chim Acta, 85:363Google Scholar
  18. 18.
    Koga T, Seki Y, Thakkar AJ (1993) Bull Chem Soc Jpn, in pressGoogle Scholar
  19. 19.
    Bardo RD, Ruedenberg K (1974) J Chem Phys 59:5956Google Scholar
  20. 20.
    Raffenetti RC (1975) Int J Quantum Chem Symp 9:289Google Scholar
  21. 21.
    Feller D, Ruedenberg K (1979) Theor Chim Acta 71:23Google Scholar
  22. 22.
    Schmidt MW, Ruedenberg K (1979) J Chem Phys 71:3951Google Scholar
  23. 23.
    Huzinaga S (1977) J Chem Phys 67:5973; (1979) 71:1984Google Scholar
  24. 24.
    Tatewaki H (1985) Chem Phys Lett 119:93Google Scholar
  25. 25.
    Koga T, Thakkar AJ (1993) Theor Chim Acta, 85:391Google Scholar
  26. 26.
    Pitzer RM (1990) QCPE Bulletin 10:14Google Scholar
  27. 27.
    Powell MJD (1964) Comput J 7:155Google Scholar
  28. 28.
    Feller D, Davidson ER (1990) in: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry. Vol 1, VCH Publ, NY, p 1–43Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Toshikatsu Koga
    • 1
  • Hiroshi Tatewaki
    • 2
  • Ajit J. Thakkar
    • 3
  1. 1.Department of Applied ChemistryMuroran Institute of TechnologyMuroran, HokkaidoJapan
  2. 2.Computation CenterNagoya City UniversityNagoya, AichiJapan
  3. 3.Department of ChemistryUniversity of New BrunswickFrederictonCanada

Personalised recommendations