Advertisement

Theoretica chimica acta

, Volume 86, Issue 6, pp 451–465 | Cite as

A non-local representation of the effective potential due to a molecular fragment

  • Renato Colle
  • Alessandro Curioni
  • Oriano Salvetti
Article

Summary

A non-local representation of the effective potential due to a molecular fragment is proposed here. Using this technique one can reproduce both Coulomb and exchange operators with kernels made up by molecular orbitals localized on a given molecular fragment. Such an approach seems particularly effective for large molecules with well-defined chemical fragments since in this case the kernel orbitals can be prepared through separate calculations on each fragment. The performance of the method is illustrated through calculations on specific molecular examples.

Key words

Non-local representation Coulomb operator Molecular fragments 

PACS.

31.15+q 31.20.Ej 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O'Leary H, Duke BJ, Eilers JE (1975) Adv Quant Chem 9:1Google Scholar
  2. 2.
    Chalvet O, Daudel R, Diner S, Malrieu JP (eds) (1976) Localization and delocalization in quantum chemistry. Reidel, Dordrecht, Vol I e IIGoogle Scholar
  3. 3.
    Boys SF (1960) Rev Mod Phys 32:296Google Scholar
  4. 4.
    Edmistone C, Ruedenberg K (1963) Rev Mod Phys 35:457Google Scholar
  5. 5.
    Newton MD, Lathan WA, Hehre WJ, Pople JA (1969) J Chem Phys 51:3927Google Scholar
  6. 6.
    Billingsley FP, Bloor JE (1971) J Chem Phys 55:5178Google Scholar
  7. 7.
    Zerner M (1975) J Chem Phys 62:2788Google Scholar
  8. 8.
    Saebo S (1992) Int J Quantum Chem 42:217Google Scholar
  9. 9.
    Panas I, Almlöf J (1992) Int J Quantum Chem 42:1073Google Scholar
  10. 10.
    Roszak S, Hariharan PC, Kaufman JJ, Koskiw S (1990) J Com Chem 11:1076Google Scholar
  11. 11.
    Kahn LR, Baybut P, Truhlar DG (1976) J Chem Phys 65:3826Google Scholar
  12. 12.
    Durand P, Barthelat JC (1978) Gazz Chim Ital 108:225Google Scholar
  13. 13.
    Dixon RN, Robertson IL (1978) in: Theoretical chemistry Vol 3, Specialist Periodical Reports, The Chemical Society, London — see for a reviewGoogle Scholar
  14. 14.
    Bachelet GB, Haman DR, Schlüter M (1982) Phys Rev B26:4199Google Scholar
  15. 15.
    Krauss M, Stevens WJ (1984) Ann Rev Phys Chem 35:357Google Scholar
  16. 16.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299Google Scholar
  17. 17.
    Bredas JL, Change RR, Silbey R, Nicolas G, Durand P (1981) J Chem Phys 75:255Google Scholar
  18. 18.
    Bredas JL, Themans B, André JM (1983) J Chem Phys 78:6137Google Scholar
  19. 19.
    André JM, Delhalle J, Bredas JL (1991) Quantum chemistry aided design of organic polymers. World Scientific Lectures and Courses Notes in Chemistry, Vol 2 and references thereinGoogle Scholar
  20. 20.
    Bonifacic U, Huzinaga S (1974) J Chem Phys 60:2779Google Scholar
  21. 21.
    Sakai Y (1981) J Chem Phys 75:1303; Sakai Y, Huzinaga S (1982) J Chem Phys 76:2537, 2552Google Scholar
  22. 22.
    Andzelm J, Radzio E, Barandiarán Z, Seijo L (1985) J Chem Phys 83:4565Google Scholar
  23. 23.
    Barandiaran Z, Seijo L (1986) J Chem Phys 84:1941Google Scholar
  24. 24.
    Huzinaga S, Seijo L, Barandiaran Z, Klobukowski M (1987) J Chem Phys 86:2132Google Scholar
  25. 25.
    Montagnani R, Salvetti O (1984) Theor Chim Acta 64:371; 65:159Google Scholar
  26. 26.
    Colle R, Fortunelli A, Salvetti O (1984) J Chem Phys 80:2654Google Scholar
  27. 27.
    Colle R, Fortunelli A, Salvetti O (1986) Mol Phys 57:1305Google Scholar
  28. 28.
    Colle R, Fortunelli A, Salvetti O (1986) Chem Phys Lett 127:84Google Scholar
  29. 29.
    Colle R, Fortunelli A, Salvetti O (1987) J de Chimie Physique 84:667Google Scholar
  30. 30.
    Durand P, Malrieu JP (1987) in: Lawley KB (ed) Ab initio methods in quantum chemistry. Wiley, NYGoogle Scholar
  31. 31.
    Pelisser M, Daudey JP, Malrieu JP, Jeung GH (1987) in: Veillard E (ed) Quantum chemistry: The challenge of transition metals and coordination chemistry. Reidel, DordrechtGoogle Scholar
  32. 32.
    McWeeny R (1956) Proc R Soc A253:242Google Scholar
  33. 33.
    McWeeny R (1960) Rev Mod Phys 32:335Google Scholar
  34. 34.
    Ohta K, Yoshioka Y, Morokuma K, Kitaura K (1983) Chem Phys Lett 101:12Google Scholar
  35. 35.
    Colle R, Salvetti O (1991) Theoret Chim Acta 80:63Google Scholar
  36. 36.
    Huzinaga S, Sakai Y, Miyoshi E, Narita S (1990) J Chem Phys 93:3319Google Scholar
  37. 37.
    Dill JD, Pople JA (1975) J Chem Phys 62:2921Google Scholar
  38. 38.
    Hehre WJ, Steward RF, Pople JA (1969) J Chem Phys 51:2657Google Scholar
  39. 39.
    Hehre WJ, Ditchfield R, Stewart RF, Pople JA (1970) J Chem Phys 52:2769Google Scholar
  40. 40.
    McLean AD, Chandler GS (1980) J Chem Phys 72:5639Google Scholar
  41. 41.
    Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PvR (1983) J Comp Chem 4:294Google Scholar
  42. 42.
    Frisch MJ, Pople A, Binkley JS (1984) J Chem Phys 80:3265Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Renato Colle
    • 1
    • 2
  • Alessandro Curioni
    • 2
  • Oriano Salvetti
    • 3
  1. 1.Dipartimento di Chimica Applicata, Facoltá di IngegneriaUniversitá di BolognaBolognaItaly
  2. 2.Renato Colle, Scuola Normale SuperiorePisaItaly
  3. 3.Istituto di Chimica Quantistica ed Energetica Molecolare del CNRPisaItaly

Personalised recommendations