Advertisement

Mathematische Zeitschrift

, Volume 91, Issue 1, pp 50–64 | Cite as

Die Harnacksche Metrik in der Theorie der harmonischen Funktionen

  • Johannes Köhn
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Ahlfors, L. V., andL. Sario: Riemann surfaces. Princeton: University Press 1960.Google Scholar
  2. [2]
    Bauer, H.: Konvexität in topologischen Vektorräumen. Vorlesungsausarbeitung, Hamburg 1964.Google Scholar
  3. [3]
    Bear, H.S.: The integral representation of functions on parts. Ill. J. (to appear).Google Scholar
  4. [4]
    Brelot, M.: Lectures on potential theory. Tata Inst. of Fundamental Research, Bombay 1960.Google Scholar
  5. [5]
    Brelot, M. G. Choquet etJ. Deny: Séminaire de théorie du potentiel, 2e année. 1958.Google Scholar
  6. [6]
    Constantinescu, C., andA. Cornea: On the axiomatic of harmonic functions I. Ann. Inst. Fourier13, 2 (1963).Google Scholar
  7. [7]
    Mokobodzki, G.: Séminaire de théorie du potentiel, 8e année. 1963/64.Google Scholar
  8. [8]
    Nevanlinna, R.: Uniformisierung. Berlin-Heidelberg-New York: Springer 1965.Google Scholar
  9. [9]
    Sternberg, S.: Lectures on differential geometry. Englewood Cliffs: Prentice Hall 1964.Google Scholar

Copyright information

© Springer-Verlag 1966

Authors and Affiliations

  • Johannes Köhn
    • 1
  1. 1.Mathematisches Institut der Universität852 Erlangen

Personalised recommendations