Skip to main content
Log in

Discrete analogs of spherical harmonics and their use in quantum mechanics: The hyperquantization algorithm

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

An algorithm for the solution of the Schrödinger equation in a discrete basis is illustrated with reference to the problem of quantization on spheres of any dimension (hyperquantization). It exploits the explicit construction of discrete analogs of spherical harmonics and leads to sparse matrix representations of the kinetic energy operator and a diagonal representation of the interaction potential. Applications are discussed for inelastic and reactive scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lill JV, Parker GA, Light JC (1982) Chem Phys Lett 89:483; Heather RW, Light JC (1983) J Chem Phys 79:147. See Muckerman JT (1990) Chem Phys Lett 173:200 for recent developments

    Google Scholar 

  2. Aquilanti V, Cavalli S, Grossi G (1986) J Chem Phys 85:1362

    Google Scholar 

  3. Aquilanti V, Grossi G (1985) Lett Nuovo Cimento 42:157

    Google Scholar 

  4. Aquilanti V, Beneventi L, Grossi G, Vecchiocattivi F (1988) J Chem Phys 89:751

    Google Scholar 

  5. Goldberger ML, Watson KM (1964) Collision theory. Wiley, New York, p 882

    Google Scholar 

  6. Jacob M, Wick GC (1959) Ann Phys 7:404

    Google Scholar 

  7. Aquilanti V, Grossi G (1980) J Chem Phys 73:1165; Aquilanti V, Grossi G, Laganà A (1981) Nuovo Cimento 63b:7

    Google Scholar 

  8. Chang ES, Fano U (1972) Phys Rev A6:173

    Google Scholar 

  9. Vilenkin NY (1968) Special functions and the theory of group representations. Am Math Soc, Providence, R.I.

    Google Scholar 

  10. Smorodinskii YA, Suslov SK (1982) Sov J Nucl Phys 35:108; (1982) 36:623 and references therein; Smirnov YF, Suslov SK, Shirokov AM (1984) J Phys A17:2157; Atakishiyev NM, Suslov SK (1985) J Phys A18:1583; Pluhar Z, Smirnov YF, Tolstoy VN (1986) J Phys A19:21

    Google Scholar 

  11. Rose ME (1957) Elementary theory of angular momentum. Wiley, New York; Edmonds AR (1960) Angular momentum in quantum mechanics. Princeton, New Jersey; Brink DM, Satchler GR (1968) Angular momentum. Clarendon, Oxford; Varshalovic DA, Moskalev AN, Khersonskii VK (1988) Quantum theory of angular momentum. World Scientific, Singapore; Zare RN (1988) Angular momentum. Wiley, New York

    Google Scholar 

  12. Hildebrand FB (1956) Introduction to numerical analysis. McGraw-Hill, New York, p 287

    Google Scholar 

  13. Abramowitz M, Stegun IA (eds) (1965) Handbook of mathematical functions. Dover, New York, p 790

    Google Scholar 

  14. Smith FT (1960) Phys Rev 120:1058

    Google Scholar 

  15. Aquilanti V, Grossi G, Laganà A (1982) J Chem Phys 76:1587

    Google Scholar 

  16. Fano U (1981) Phys Rev A24:2402

    Google Scholar 

  17. Arthurs AM, Dalgarno A (1960) Proc Roy Soc A256:540

    Google Scholar 

  18. Alder K, Bohr A, Huus T, Mottelson B, Winther A (1956) Rev Mod Phys 28:432; Brussaard PJ, Tolhoek HA (1957) Physica 23:955; Schulten K, Gordon RG (1975) J Math Phys 16:1971

    Google Scholar 

  19. Khare V (1978) J Chem Phys 68:4361

    Google Scholar 

  20. Dickinson AS, Certain PR (1968) J Chem Phys 49:4209

    Google Scholar 

  21. Aquilanti V, Grossi G, Laganà A (1982) Chem Phys Lett 93:174; Aquilanti V, Cavalli S, Laganá A (1982) Chem Phys Lett 93:179; Aquilanti V, Cavalli S (1987) Chem Phys Lett 141:309; Aquilanti V, Cavalli S, Grossi G, Anderson RW (1990) J Chem Soc Faraday Trans 86:1681

    Google Scholar 

  22. Walker RB, Light JC (1975) Chem Phys 7:84

    Google Scholar 

  23. Launay JM (1976) J Phys B9:1823

    Google Scholar 

  24. Erdelyi A (1953) Higher trascendental functions, vol 2. McGraw-Hill, New York; Karlin S, McGregor JL (1961) Scripta Math 26:33

    Google Scholar 

  25. Kil'dyushov MS (1972) Sov J Nucl Phys 15:113

    Google Scholar 

  26. Aquilanti V, Cavalli S, Grossi G, Anderson RW (in preparation)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aquilanti, V., Cavalli, S. & Grossi, G. Discrete analogs of spherical harmonics and their use in quantum mechanics: The hyperquantization algorithm. Theoret. Chim. Acta 79, 283–296 (1991). https://doi.org/10.1007/BF01113697

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113697

Key words

Navigation