Skip to main content
Log in

Quantum chemical reaction dynamics on a highly parallel supercomputer

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

In this paper we describe the solution of the quantum mechanical equation for the scattering of an atom by a diatomic molecule on a high-performance distributed-memory parallel supercomputer, using the method of symmetrized hyperspherical coordinates and local hyperspherical surface functions. We first cast the problem in a format whose inherent parallelism can be exploited effectively. We next discuss the practical implementation of the parallel programs that were used to solve the problem. The benchmark results and timing obtained from the Caltech/JPL Mark IIIfp hypercube are competitive with the CRAY X-MP, CRAY 2 and CRAY Y-MP supercomputers. These results demonstrate that such highly parallel architectures permit quantum scattering calculations with high efficiency in parallel fashion and should allow us to study larger, more complicated chemical systems. Future extensions to this approach are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Truhlar DG, Wyatt RE (1976) Ann Rev Phys Chem 27:1

    Google Scholar 

  2. Schatz GC (1986) in: Clary DC (ed) Theory of chemical reaction dynamics. Proc NATO workshop, Orsay, France, p 1

  3. Garrett BC, Truhlar DG (1984) Ann Rev Phys Chem 35:159

    Google Scholar 

  4. Bowman JM (1985) Adv Chem Phys 61:115

    Google Scholar 

  5. Schatz GC, Kuppermann A (1975) J Chem Phys 62:2502

    Google Scholar 

  6. Schatz GC, Kuppermann A (1976) J Chem Phys 65:4642; 65:4668

    Google Scholar 

  7. Elkowitz AB, Wyatt RE (1975) J Chem Phys 62:2504, 63:702

    Google Scholar 

  8. Walker RB, Stechel EB, Light JC (1978) J Chem Phys 69:2922

    Google Scholar 

  9. Bernstein RB (ed) (1979) Atom-molecule collision theory. Plenum, New York

    Google Scholar 

  10. Kuppermann A, Hipes PG (1986) J Chem Phys 84:5962

    Google Scholar 

  11. Hipes PG, Kuppermann A (1987) Chem Phys Lett 133:1

    Google Scholar 

  12. Parker GA, Pack RT, Archer BJ, Walker RB (1987) Chem Phys Lett 137:564; Pack RT, Parker GA (1987) J Chem Phys 87:3888

    Google Scholar 

  13. Zhang JZH, Miller WH (1987) Chem Phys Lett 140:329; (1988) 153:465; (1989) 159:130

    Google Scholar 

  14. Schatz GC (1988) Chem Phys Lett 150:92

    Google Scholar 

  15. Haug K, Schwenke DW, Shima Y, Truhlar DG, Zhang J, Kouri DJ (1986) J Phys Chem 90:6757; Schwenke DW, Haug K, Truhlar DG, Sun Y, Zhang JZH, Kouri DJ (1987) J Phys Chem 91:6080; Zhang JZH, Kouri DJ, Haug K, Schwenke DW, Shima Y, Truhlar DG (1988) J Chem Phys 88:2492

    Google Scholar 

  16. Mladenovic M, Zhao M, Truhlar DG, Schwenke DW, Sun Y, Kouri DJ (1988) Chem Phys Lett 146:358; Yu CH, Kouri DJ, Zhao M, Truhlar DG (1989) Chem Phys Lett 157:491

    Google Scholar 

  17. Cuccaro SA, Hipes PG, Kuppermann A (1989) Chem Phys Lett 154:155

    Google Scholar 

  18. Cuccaro SA, Hipes PG, Kuppermann A (1989) Chem Phys Lett 157:440

    Google Scholar 

  19. Webster F, Light JC (1989) J Chem Phys 90:300

    Google Scholar 

  20. Linderberg J, Padkjaer S, Öhrn Y, Vessal B (1989) J Chem Phys 90:6254

    Google Scholar 

  21. Manolopoulos DE, Wyatt RE (1989) Chem Phys Lett 159:123

    Google Scholar 

  22. Kuppermann A (1975) Chem Phys Lett 32:374

    Google Scholar 

  23. Ling RT, Kuppermann A (1975) in: Rusley JS, Geballe R (eds) Electronic and atomic collisions. Abstracts of papers of the 9th Int Conf Physics of Electronic and Atomic Collisions, Seattle, Washington, 24–30 July 1975, Vol 1, Univ Washington Press, Seattle, pp 353, 354

    Google Scholar 

  24. Launay JM, Dourneuf ML (1989) Chem Phys Lett 163:178

    Google Scholar 

  25. Launay JM, Dourneuf ML (1990) Chem Phys Lett 169:473

    Google Scholar 

  26. Seitz CL, Matisoo J (1984) Phys Today 37(5):38; Seitz CL (1985) Comm of the ACM 28(1):22

    Google Scholar 

  27. Fox GC, Otto SW (1984) Phys Today 37(5):50

    Google Scholar 

  28. Fox GC, Johnson MA, Cyzenga GA, Otto SW, Salmon JK, Walker DW (1988) Solving problems in concurrent processors. Prentice Hall, New Jersey

    Google Scholar 

  29. Wu YM, Cuccaro SA, Hipes PG, Kuppermann A (1990) Chem Phys Lett 168:429

    Google Scholar 

  30. Hipes PG, Mattson T, Wu YM, Kuppermann A (1988) Proceedings of the Third Conference on Hypercube Concurrent Computers and Applications, Pasadena. ACM, New York, pp 1051–1061

    Google Scholar 

  31. Johnson BR (1973) J Compl Phys 13:445; (1977) J Chem Phys 67:4086; (1979) NRCC Workshop, Lawrence Berkeley Laboratory, Report No LBL 9501

    Google Scholar 

  32. Manolopoulos DE (1986) J Chem Phys 85:6425

    Google Scholar 

  33. Liu B (1973) J Chem Phys 58:1925; Siegbahn P, Liu B (1973) J Chem Phys 58:1925; Siegbahn P, Liu B (1978) J Chem Phys 68:2457

    Google Scholar 

  34. Truhlar DG, Horowitz CJ (1978) J Chem Phys 68:2468; (1979) 71:1514 (E)

    Google Scholar 

  35. Delves LM (1959) Nucl Phys 9:391; (1960) 20:275

    Google Scholar 

  36. Lepetit B, Peng Z, Kuppermann A (1990) Chem Phys Lett 166:572

    Google Scholar 

  37. Lepetit B, Kuppermann A (1990) Chem Phys Lett 166:581

    Google Scholar 

  38. Hood DM, Kuppermann A (1986) in: Clary DC (ed) Theory of chemical reaction dynamics. Reidel, Dordrecht, pp 193–214

    Google Scholar 

  39. Fox GC (ed) (1985) Caltech JPL concurrent computation project Annual report 1983–1984

  40. Fox GC, Lyzenga G, Rogstad D, Otto S (1985) The Caltech concurrent computation program — Project description, Proc. 1985 ASME Intl Computers in Engineering Conference

  41. Gilbert EN (1958) Bell System Technical Journal 37:815; Salmon J (1984) Caltech Concurrent Computation Project ReportC 3P-51

  42. Ipsen ICF, Jessup ER (1987) Proc Second Conf Hypercube Multiprocessors, Knoxville, Tennessee; Ipsen ICF, Jessup ER (1987) Yale internal report: YALEU/DCS/RB-548; Fox GC (1984) Caltech Concurrent Computation Project ReportC 3P-95

  43. Smith BT (1976) Matrix Eigensystem Routine-EISPACK Guide, 2nd ed., Vol 6 of Lecture Notes in Computer Science, Springer-Verlag, New York

    Google Scholar 

  44. Fox GC (1984) Caltech Concurrent Computation Project ReportC 3P-98; Patterson J (1986) Caltech Concurrent Computation Project ReportC 3P-56.58

  45. Wilkinson JH, Reinsch C (1971) Linear algebra, vol II of Handbook for Automatic Computation, Springer-Verlag, New York, pp 227–240

    Google Scholar 

  46. Pfeiffer W, Alagar A, Kamrath A, Leary RH, Rogers J (1988) Benchmarking and optimization of scientific codes on the CRAY X-MP, CRAY 2, and SCS-40 vector computers. San Diego Supercomputer Center Report GA-A19478

  47. Messina P, Baillie CF, Felten EW, Hipes PG, Walker DW, Williams RD, Pfeiffer W, Alagar A, Kamrath A, Leary RH, Rogers J (1988) Benchmarking advanced architecture computers. Caltech Concurrent Computation Project ReportC 3P-712

  48. Hipes PG, Kuppermann A (1988) Gauss-Jordan inversion with pivoting on the Caltech Mark II Hypercube, in: Fox GC (ed) Proc Third Conf Hypercube Multiprocessors, Pasadena, CA, 19–20 January, Vol II — Applications. California Institute of Technology, Mail Stop 206–49, Pasadena, CA, pp 1621–1634

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work performed in partial fulfillment of the requirements for the Ph.D. degree in Chemistry at the California Institute of Technology.

Contribution number 8209

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, YS.M., Cuccaro, S.A., Hipes, P.G. et al. Quantum chemical reaction dynamics on a highly parallel supercomputer. Theoret. Chim. Acta 79, 225–239 (1991). https://doi.org/10.1007/BF01113694

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113694

Key words

Navigation