Skip to main content
Log in

Post-adiabatic approach to atomic and molecular processes: The van der Waals interactions of some open shell systems

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

Various properties of post-adiabatic representations of multichannel Schrödinger equations are described in the general context of adiabatic and classical path approximations as used in atomic and molecular physics. The van der Waals interactions of fluorine, chlorine, and oxygen atoms with rare gases, hydrogen, methane, and hydrogen halides are considered: it is found that in some of these systems, the first-order post-adiabatic scheme exhibits a smaller coupling than the adiabatic representation, thus providing an appropriate choice of the basis functions for a decoupling approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aquilanti V, Cavalli S, Sevryuk MB (1994) J Math Phys 35:536

    Google Scholar 

  2. Born M, Oppenheimer R (1927) Ann Phys 84:457

    Google Scholar 

  3. Smith FT (1969) Phys Rev 179:111

    Google Scholar 

  4. Garrett BC, Truhlar DG (1981) In: Theoretical chemistry: advances and perspectives, Vol 6A. Academic Press, New York, p 215; Garrett BC, Truhlar DC, Melius CF (1983) In: Hinze J (ed) Energy storage and redistribution in molecules. Plenum, New York, p 375

    Google Scholar 

  5. Tully JC (1976) In: Miller WH (ed) Dynamics of molecular collisions, Part B (Modern theoretical chemistry, Vol 2). Plenum, New York, p 217

    Google Scholar 

  6. Lichten W (1963) Phys Rev 131:229

    Google Scholar 

  7. O'Malley TF (1971) Adv At Mol Phys 7:223

    Google Scholar 

  8. Baer M (1975) Chem Phys Lett 35:112

    Google Scholar 

  9. Baer M, Drolshagen G, Toennies JP (1980) J Chem Phys 73:1690; Baer M (1985) In: Baer M (Ed) Theory of chemical reaction dynamics, Vol 2. CRC Press, Boca Raton, FL, p 219; Baer M, Nakamura H (1987) J Chem Phys 87:4651

    Google Scholar 

  10. Bunker DL (1971) Methods Comput Phys 10:287

    Google Scholar 

  11. Porter RN, Raff LM (1976) In: Miller WH (ed) Dynamics of molecular collisions, Part B (Modern theoretical chemistry, Vol 2). Plenum, New York, p 1

    Google Scholar 

  12. Billing GD (1984) Comput Phys Rep 1:237

    Google Scholar 

  13. Billing GD (1991) Trends Chem Phys 1:133; (1993) In: Cerjan C (ed) Numerical grid methods and their application to Schrödinger's equation (NATO ASI Series C, Vol 412). Kluwer, Dordrecht, p 121

    Google Scholar 

  14. Muckerman JT, Gilbert RD, Billing GD (1988) J Chem Phys 88:4779; Billing GD, Muckerman JT (1989) ibid. 91:6830; Marković N, Billing GD, Muckerman JT (1990) Chem Phys Lett 172:509

    Google Scholar 

  15. Marković N, Billing GD (1992) J Chem Phys 97:8201; (1993) Chem Phys 173:385

    Google Scholar 

  16. Aquilanti V, Grossi G, Laganà A (1982) Chem Phys Lett 93:174; Aquilanti V, Cavalli S, Laganà A (1982) ibid 93:179; Aquilanti V, Cavalli S, Grossi G (1987) ibid 133:531; Aquilanti V, Cavalli S (1987) ibid 133:538; Aquilanti V, Cavalli S, Grossi G (1989) Theor Chim Acta 75:33

    Google Scholar 

  17. Child MS (1976) In: Miller WH (ed) Dynamics of molecular collisions, Part B (Modern theoretical chemistry, Vol 2). Plenum, New York, p 171; Child MS (1991) Semiclassical mechanics with molecular applications. Clarendon, Oxford

    Google Scholar 

  18. Aquilanti V, Cavalli S, Grossi G (1993) In: Bowman JM (ed) Advances in molecular vibrations and collision dynamics, Vol 2A. JAI Press, p 147; Aquilanti V, Cavalli S, Sevryuk MB (1991) J Phys A 24:4475; Aquilanti V, Cavalli S, Sevryuk MB (1993) J Math Phys 34:3351

  19. Chan S-K, Light JC, Lin J-L (1968) J Chem Phys 49:86

    Google Scholar 

  20. Wu S-F, Levine RD (1971) Mol Phys 22:881; Wu S-F, Johnson BR, Levine RD (1973) ibid. 25:609; 25:839

    Google Scholar 

  21. Mrugała F (1993) Intern Rev Phys Chem 12:1

    Google Scholar 

  22. Klar H, Fano U (1976) Phys Rev Lett 37:1132

    Google Scholar 

  23. Klar H (1977) Phys Rev A 15:1452

    Google Scholar 

  24. Klar H, Klar M (1978) Phys Rev A 17:1007

    Google Scholar 

  25. Bohn JL, Fano U (1993) preprint

  26. Reznikov AI, Umanskii SYa (1991) Sov J Chem Phys 8:2193

    Google Scholar 

  27. Fano U (1981) Phys Rev A 24:2402

    Google Scholar 

  28. Johnson BR (1980) J Chem Phys 73:5051; (1983) 79:1906; (1983) 79:1916

    Google Scholar 

  29. Aquilanti V, Cavalli S (1986) J Chem Phys 85:1355; Aquilanti V, Cavalli S, Grossi G (1986) ibid. 85:1362; Aquilanti V, Cavalli S (1987) Chem Phys Lett 141:309; Aquilanti V, Laganà A, Levine RD (1989) ibid. 158:87; Aquilanti V, Cavalli S, Grossi G, Pellizzari V, Rosi M, Sgamellotti A, Tarantelli F (1989) ibid. 162:179; Aquilanti V, Cavalli S, Grossi G, Anderson RW (1990) J Chem Soc Faraday Trans 86:1681; Aquilanti V, Cavalli S, Grossi G (1991) Theor Chim Acta 79:283; Aquilanti V, Cavalli S (1992) Few Body Systems Suppl 6:573; Aquilanti V, Cavalli S, Monnerville M (1993) In: Cerjan CC (ed) Numerical grid methods and their application to Schrödinger's equation. Kluwer Academic Publishers, p 25

    Google Scholar 

  30. Fock V (1958) K Nor Vidensk Selsk Forh 31:138

    Google Scholar 

  31. Leforestier C, Wyatt RE (1983) J Chem Phys 78:2334; Kosloff R, Kosloff D (1986) J Comput Phys 63:363; Neuhauser D, Baer M (1989) J Chem Phys 90:4351; Baer M, Neuhauser D, Oreg Y (1990) J Chem Soc Faraday Trans 86:1721; Child MS (1991) Mol Phys 72:89; Last I, Neuhauser D, Baer M (1992) J Chem Phys 96:2017; Baer M, Nakamura H (1992) ibid. 96:6565

    Google Scholar 

  32. Last I, Baram A, Baer M (1992) Chem Phys Lett 195:435; Baram A, Last I, Baer M (1993) ibid. 212:649; (1993) 215:416; Szichman H, Last I, Baram A, Baer M (1993) J Phys Chem 97:6436; Last I, Baram A, Szichman H, Baer M (1993) ibid. 97:7040

    Google Scholar 

  33. Aquilanti V, Liuti G, Pirani F, Vecchiocattivi F (1989) J Chem Soc Faraday Trans 2 85:955

    Google Scholar 

  34. Becker CH, Casavecchia P, Lee YT, Olson RE, Lester WA Jr (1979) J Chem Phys 70:5477; Aquilanti V, Luzzatti E, Pirani F, Volpi GG (1982) Chem Phys Lett 90:382; (1988) J Chem Phys 89:6165; Aquilanti V, Candori R, Cappelletti D, Pirani F (1990) In: Capitelli M, Bardsley JN (eds) Nonequilibrium processes in partially ionized gases (NATO ASI Series B, Vol 220). Plenum, New York, p 383; Aquilanti V, Candori R, Cappelletti D, Luzzatti E, Pirani F (1990) Chem Phys 145:293

    Google Scholar 

  35. Aquilanti V, Cappelletti D, Lorent V, Luzzatti E, Pirani F (1992) Chem Phys Lett 192:153; (1993) J Phys Chem 97:2063; Aquilanti V, Cappelletti D, Pirani F (1993) J Chem Soc Faraday Trans 89:1467

    Google Scholar 

  36. Aquilanti V, Cappelletti D, Pirani F, Rusin LYu, Sevryuk MB, Toennies JP (1991) J Phys Chem 95:8248

    Google Scholar 

  37. Aquilanti V, Luzzatti E, Pirani F, Volpi GG (1980) J Chem Phys 73:1181; Aquilanti V, Candori R, Luzzatti E, Pirani F, Volpi GG (1986) ibid. 85:5377; Aquilanti V, Candori R, Pirani F (1988) ibid. 89:6157; Aquilanti V, Candori R, Liuti G, Pirani F (1988) In: Whitehead JC (ed) Selectivity in chemical reactions (NATO ASI Series C, Vol 245). Kluwer, New York, p 179; Aquilanti V, Candori R, Mariani L, Pirani F, Liuti G (1989) J Phys Chem 93:130

    Google Scholar 

  38. Aquilanti V, Vecchiocattivi F (1989) Chem Phys Lett 156:109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aquilanti, V., Cavalli, S., Rusin, L.Y. et al. Post-adiabatic approach to atomic and molecular processes: The van der Waals interactions of some open shell systems. Theoret. Chim. Acta 90, 225–256 (1995). https://doi.org/10.1007/BF01113470

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113470

Key words

Navigation