Skip to main content
Log in

A stable vorticity-velocity formulation for viscous flow analysis

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A new least-squares weak form for the Stokes problem is presented. In the proposed formulation, the pressure is separated on the analytical level. It is shown that stability of the separated systems obtained is independent of the Reynolds number, in contrast to the common sensitive coupled or penalty primitive variable formulations. This is achieved for the price of admitting a larger number of variables. The new formulation is particularly suitable when application of operator splitting methods (Bristeau et al. 1985) is considered. It is applicable both to two and to three dimensional situations. Complementary information required for direct implementation to the nonlinear Navier-Stokes problem is given in the appendix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bristeau, M.O.; Glowinski, R.; Mantel, B.; Périaux, J.; Perrier, P. (1985): Numerical methods for incompressible and compressible Navier-Stokes problems. In: Gallagher, R. H.; Carey, G. F.; Oden, J. T.; Zienkiewicz, O. C. (eds.): Finite elements in fluids, Vol. 6, pp. 1–40. Chichester: Wiley

    Google Scholar 

  • Burggraf, O. R. (1966): Analytical and numerical studies of the structure of steady separated flows. J. Fluid. Mech. 24, 113–151

    Google Scholar 

  • Crouzeix, M.; Raviart, P. A. (1973): Conforming and non-conforming finite element methods for solving the stationary Stokes equations. RAIRO R-3, 33–76

    Google Scholar 

  • Dennis, S. C. R.; Ingham, D. B.; Cook, R. N. (1979): Finite-difference methods for calculating steady incompressible flows in three dimensions. J. comp. Phys. 33, 325–339

    Google Scholar 

  • Fortin, M.; Fortin, A. (1985): Newer and newer elements for incompressible flow. In: Gallagher, R. H.; Carey, G. F.; Oden, J. T.; Zienkiewicz, O. C. (eds.): Finite elements in fluids, Vol. 6, pp. 171–187. Chichester: Wiley

    Google Scholar 

  • Gatski, T. B.; Grosch, C. E.; Rose, M. E. (1982): A numerical study of the two-dimensional Navier-Stokes equations in vorticity-velocity variables. J. com. Phys. 48, 1–22

    Google Scholar 

  • Gellert, M.; Harbord, R. (1987). Symmetric forms for finite element analysis of the Navier-Stokes problem. Comput. Fluids 15, 379–389

    Google Scholar 

  • Hughes, T. J. R.; Franca, L. P (1987): A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity/pressure spaces. Comp. Meth. Appl. Mech. Engng. 65, 85–96

    Google Scholar 

  • Nallasamy, M.; Krishna Prasad, K. (1977): On cavity flow at high Reynolds numbers. J. Fluid Mech. 79, 391–414

    Google Scholar 

  • Olson, M. D.; Tuann, S. Y. (1979): New finite element results for the square cavity. Comput. Fluids 7, 123–135

    Google Scholar 

  • Orlandi, P. (1987): Vorticity-velocity formulations for highRe flows. Comput. Fluids 15, 137–149

    Google Scholar 

  • Pironneau, O. (1986): Conditions aux limites sur la pression pour les équations de Stokes et de Navier-Stokes. C. R. Acad. Sc. Paris, t. 303, Serie I (9), pp. 403–406

    Google Scholar 

  • Prager, W. (1961): Einführung in die Kontinuumsmechanik. Basel: Birkhäuser

    Google Scholar 

  • Schreiber, R.; Keller, H. B. (1983): Driven cavity flows by efficient numerical techniques. J. comp. Phys. 49, 310–333

    Google Scholar 

  • Thomasset, F. (1981): Implementation of finite element methods for Navier-Stokes equations. Berlin, Heidelberg, New York: Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gellert, M., Harbord, R. A stable vorticity-velocity formulation for viscous flow analysis. Computational Mechanics 5, 417–427 (1990). https://doi.org/10.1007/BF01113446

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113446

Keywords

Navigation