Skip to main content
Log in

Metals in biology: Electronic structure, properties and charge transfer for copper complexes of glyoxal and dithiene

Ab initio SCF calculations

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

In an attempt to study the role of metals in biologyab initio SCF calculations have been performed on a model complex simulating the binding between metals and biological materials. There is a certain distinction between the copper complexes compared to the other transition metals and in many cases the copper complexes are more similar to the Li and Be complexes than to other transition metal complexes. One special feature of the copper complexes is their strong ability for an easy transfer between the Cu(I) and Cu(II) states, allowing for a very flexible charge transfer with small energies required for the redox processes. These processes have been described in terms of orbital energies and Mulliken populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fischer-Hjalmars I, Henriksson-Enflo A (1982) Adv Quant Chem 16:1;

    Google Scholar 

  2. Demoulin D, Fischer-Hjalmars I, Henriksson-Enflo A, Pappas J, Sundbom M (1977) Int J Quant Chem 12, Suppl 1:351

    Google Scholar 

  3. Fischer-Hjalmars I, Holmgren H, Henriksson-Enflo A (1986) Int J Quantum Chem, Quant Biol Symp 12:57;

    Google Scholar 

  4. Fischer-Hjalmars I, Holmgren H (1988) J Mol Struct (Theochem) 179:1;

    Google Scholar 

  5. Fischer-Hjalmars I, Holmgren H (1989) J Mol Struct (Theochem) 199:149;

    Google Scholar 

  6. Fischer-Hjalmars I, Holmgren H (1989) USIP Report 89-01. University of Stockholm

  7. Gray HB (1965) Transit Metal Chem 1:240;

    Google Scholar 

  8. Schrauzer GN, Mayweg VP (1965) J Amer Chem Soc 87:3586;

    Google Scholar 

  9. Schrauzer GN (1968) Transit Metal Chem 4:299;

    Google Scholar 

  10. McCleverty JA (1968) Progr Inorg Chem 10:49;

    Google Scholar 

  11. Hoyer E, Dietsch W, Schroth W (1971) Z Chem 11:41;

    Google Scholar 

  12. Burns RP, McAuliffe CA (1979) Adv Inorg Chem Radiochem 22:303

    Google Scholar 

  13. Herman ZS, Kirchner RF, Loew GH, Mueller-Westerhoff UT, Nazzal A, Zerner MC (1982) Inorg Chem 21:46;

    Google Scholar 

  14. Yamabe T, Hori K, Minato T, Fukui K, Sugiura Y (1982) Inorg Chem 21:2040

    Google Scholar 

  15. Kaupp M, Stoll H, Preuss H, Kaim W, Stahl T, van Koten G, Wissing E, Smeets WJJ, Spek AL (1991) J Amer Chem Soc 113:5606

    Google Scholar 

  16. Siiman O, Carey RR (1980) J Inorg Biochem 12:353;

    Google Scholar 

  17. van Stein G, van Koten G, Vireze V, Brevard C, Spek AL (1984) J Amer Chem Soc 106:4486

    Google Scholar 

  18. Fischer-Hjalmars I, Henriksson-Enflo A (1980) Int J Quantum Chem XVIII:409

    Google Scholar 

  19. See for example, a. Karlin K, Zubieta J (eds) (1983) Copper coordination chemistry: Biochemical and inorganic perspectives. Adenine, Guilderland, NY;

    Google Scholar 

  20. Karlin K, Gultneh Y (1987) in: Lippard S (ed) Progress in Inorganic Chemistry 35:219. Wiley, NY;

    Google Scholar 

  21. Karlin K, Gultneh Y (1985) J Chem Educ 62:983;

    Google Scholar 

  22. Bertini I, Dragor S, Luchinot C (eds) (1983) Coordination chemistry of metalloenzymes. Reidel;

  23. Lontie R (ed) (1984) Copper proteins and copper enzymes. CRC, Roca Baton, FL;

    Google Scholar 

  24. Sigel H (ed) (1981) Metal ions in biological systems, Vol 12, Marcel Dekker, NY;

    Google Scholar 

  25. Sigel H (ed) (1981) Metal ions in biological systems, Vol 13, Marcel Dekker, NY;

    Google Scholar 

  26. Eichhorn GL (ed) (1973) Inorganic biochemistry. Elsevier, Amsterdam

    Google Scholar 

  27. Glaser C (1870) Ann Chem Pharm 154:159

    Google Scholar 

  28. Williams JM, Carneiro K (1985) Adv Inorg Chem Radiochem 29:249;

    Google Scholar 

  29. Williams J, Wang HH, Emge TJ, Geiser U, Beno MA Leung PCW, Carlson KD, Thorn RJ, Schultz AJ, Whangbo MH (1987) Progr Inorg Chem 35:54;

    Google Scholar 

  30. Nakamura T, Nogami T, Shirota Y (1987) Bull Chem Soc Japan 60:3447

    Google Scholar 

  31. See for example, Lundqvist S, Tosatti E, Tosi MP, Lu Y (eds) (1987) Proc Adriatico Research Conf on High Temperature Superconductors, ICTP, Trieste, Italy 5–8 July 1987. World Scientific Publ Co, Singapore

    Google Scholar 

  32. Almlöf J (1974) USIP-Report 74-29, Univ of Stockholm (for the Integral Part);

  33. Bagus PS (1972) Documentation for Alchemy-Energy Expressions for Open Shell Systems, IBM Res Report RJ 1077

  34. Roothaan CCJ (1960) Rev Modern Phys 32:179

    Google Scholar 

  35. Huzinaga S (1965) J Chem Phys 42:1293

    Google Scholar 

  36. Roos B, Siegbahn P (1970) Theor Chim Acta 17:209

    Google Scholar 

  37. Roos B, Veillard A, Vinot G (1971) Theor Chim Acta 20:1

    Google Scholar 

  38. Henriksson-Enlfo A (1986) Thesis, Univ of Stockholm

  39. Stohrer WD, Hoffmann R (1972) J amer Chem Soc 94:1661;

    Google Scholar 

  40. Jean Y, Lledos A, Burdett JK, Hoffmann RA (1988) J Amer Chem Soc 110:4506

    Google Scholar 

  41. Blomberg MRA, Fischer-Hjalmars I, Henriksson-Enflo A (1980) Israel J Chem 19:143

    Google Scholar 

  42. Irving P, Williams RJP (1953) J Chem Soc (London) 3192

  43. Blomberg MRA, Fischer-Hjalmars I, Henriksson-Enflo A (1979) USIP-Report 79-11. Univ of Stockholm

  44. Fischer-Hjalmars I, Henriksson-Enflo A, Homgren H (1992) J Mol Struct (Theochem) 261:21

    Google Scholar 

  45. T. Koopmans' (1933) Physica 1:104

    Google Scholar 

  46. Coutiere MM, Demuynck J, Veillard A (1972) Theor Chim Acta 27:281

    Google Scholar 

  47. Furlani C, Cauletti C (1978) Structure and Bonding 35:119

    Google Scholar 

  48. Olson CG, Lui R, Yang AB, Lynch DW, Arko AJ, List RS, Veal BW, Cheng YC, Jiang PZ, Paulikas AP (1989) Science 245:731

    Google Scholar 

  49. Margaritondo G, Huber DL, Olson CG (1989) Science 246:770

    Google Scholar 

  50. Mulliken RS (1955) J Chem Phys 23:1833, 1841, 2338, 2343

    Google Scholar 

  51. Davidson ER, Chakravorty S (1992) Theor Chim Acta 83:319

    Google Scholar 

  52. Hori K, Tachibana A (1986) Theor Chim Acta 70:153

    Google Scholar 

  53. Tachibana A, Fukui K (1978) Theor Chim Acta 49:321;

    Google Scholar 

  54. Tachibana A (1987) Phys Rev A35:18

    Google Scholar 

  55. Goodenough JB, Zhou JS, Allan K (1991) J Mater Chem 1:715

    Google Scholar 

  56. Bohm MC, Bubeck G, Oles AM (1989) Chem Phys 135:27

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Inga Fischer-Hjalmars on the occasion of her 75th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henriksson-Enflo, A., Holmgren, H. Metals in biology: Electronic structure, properties and charge transfer for copper complexes of glyoxal and dithiene. Theoret. Chim. Acta 87, 247–266 (1994). https://doi.org/10.1007/BF01113382

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113382

Key words

Navigation