Skip to main content
Log in

The yttrium effect on the corrosion resistance of CO2-laser processed MCrAlY coatings

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

To improve the corrosion resistance and to study the effect of yttrium in the behavior of coatings produced by thermal spraying MCrAlY (M=Ni, Co) powders, CO2 laser processing was conducted. Three methods were used: (1) a combination of gas flame and plasma spraying in air followed by laser glazing in argon, (2) low-pressure plasma spraying (LPPS) and laser glazing in argon, and (3) LPPS and laser-gas (O2) alloying. Laser glazing in argon of the MCrAlY coatings sprayed in air promoted formation of weakly adherent agglomerates of Al−Y oxides and an alumina-chromia solid solution. Glazing in argon atmosphere of LPPS CoNiCrAlY and NiCrAlY coatings caused the formation of nickel aluminides besides the formation of Y−Al compounds. Gas (O2)-alloying of these coatings produces continuous and adherent (yttrium-containing) alumina and chromia layers. The effects of yttrium on the characteristics of the oxides formed in the coatings during laser glazing, laser-gas alloying, and high-temperature oxidation is discussed. This work also investigated the oxidation resistance of the laser-processed MCrAlY coatings in air and in the presence of 85 mol/o V2O5−Na2SO4 fused salt at 900°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. B. Pfeil, U. K. Patent No. 574088. 1957 (cited in Ref. 4.).

    Google Scholar 

  2. E. Lugscheider, D. Hofmann, and A. R. Nicoll,J. Thermal Spray Technol. 1, 239 (1992).

    Google Scholar 

  3. F. S. Pettit and G. W. Goward, inCoatings for High Temperature Applications, E. Lang, ed. (Elsevier, New York, 1986), p. 341.

    Google Scholar 

  4. D. P. Whittle and J. Stringer,Phil. Trans. R. Soc. London A 295, 309 (1984).

    Google Scholar 

  5. A. M. Huntz, inThe Role of Active Elements in the Oxidation Behaviour of High Temperature Metals and Alloys, E. Lang, ed. (Elsevier, New York, 1989), p. 81.

    Google Scholar 

  6. D. P. Moon,Mater. Sci. Technol. 5, 754 (1989).

    Google Scholar 

  7. S. Mrowec, A. Gil, and J. Jedlinski,Werkst. Korros. 38, 563 (1987).

    Google Scholar 

  8. F. A. Golightly, F. H. Stott, and G. C. Wood,J. Electrochem. Soc. 126, 1035 (1979).

    Google Scholar 

  9. T. A. Ramanarayanan, R. Ayer, R. Petkovic-Luton, and D. P. Leta, in Proc. Symp. High Temperature Materials Chemistry-IV (The Electrochemical Society, 1988), p. 254.

  10. C. M. Cotell, G. J. Yurek, R. J. Hussey, D. F. Mitchell, and M. J. Graham,Oxid. Met. 34, 173 (1990).

    Google Scholar 

  11. B. Pierragi and R. A. Rapp,J. Electrochem. Soc. 140, 2844 (1993).

    Google Scholar 

  12. J. C. Pivin, D. Delaunay, C. Roques-Carmes, A. M. Huntz, and P. Lacombe,Corros. Sci. 20, 351 (1980).

    Google Scholar 

  13. E. J. Vineberg and D. L. Douglass,Oxid. Met. 25, 1 (1986).

    Google Scholar 

  14. A. W. Fukenbusch, J. G. Smeggil, and N. S. Bornstein,Met. Trans. A 16, 1164 (1985).

    Google Scholar 

  15. J. L. Smialek,Met. Trans. A 22, 739 (1991).

    Google Scholar 

  16. H. J. Schmutzler, H. Viefhaus, and H. J. Grabke,Surf. Interface Anal. 18, 581 (1992).

    Google Scholar 

  17. Y. Longa and M. Takemoto, in Proc. 7th Int. Conf. Surface Modification Technologies, Nagaoka, Japan, 1993.

  18. R. Streiff, in Proc. Electrochemical Society, Pennington, NJ, 1985 Vol. 82, p. 299.

  19. J. G. Smeggil, A. W. Funkenbusch, and N. S. Bornstein,Thin Solid Films 119, 327 (1984).

    Google Scholar 

  20. H. Bhat, H. Herman, and R. J. Coyle, in Proc. 112th. AIME Ann. Meeting, Atlanta, 1983, p. 37.

  21. Y. Longa, Y. Yamashita, and M. Takemoto,J. Jpn. Soc. Corros. Eng. (Zairyo-to-Kankyo)41, 542 (1992).

    Google Scholar 

  22. Y. Longa and M. Takemoto,Corrosion 48, 599 (1991).

    Google Scholar 

  23. D. L. Douglass, inOxidation of Metals and Alloys (American Society for Metals, Metals Park, OH, 1970), p. 137.

    Google Scholar 

  24. K. Kobayashi (Ed.), inThermophysical Properties Handbook (Japanese Thermophysics Society, Joukendo Publ., Tokyo, 1990 (in Japanese).

    Google Scholar 

  25. T. B. Massalski (Ed.), inBinary Alloy Phase Diagrams, 2nd. ed. (American Society for Metals, Metals Park, OH, 1990), Vols. 1, 2.

    Google Scholar 

  26. M. C. Flemings,Solidification Processing (McGraw-Hill, New York, 1974), Chap. 3.

    Google Scholar 

  27. W. M. Steen,Laser Material Processing (Springer-Verlag, New York, 1991), Chap. 6.

    Google Scholar 

  28. F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen,Cohesion in Metals (Elsevier, 1988), Chap. 3.

  29. Y. Longa, M. Takemoto, and G. Ueno, in Proc. Corrosion '93 (Japan Society of Corrosion Engineering, Tokyo, Japan, 1993), p. 275.

    Google Scholar 

  30. C. H. Wu, Y. C. Chuang, and X. P. Su,Z. MKDE 82, 73 (1991).

    Google Scholar 

  31. R. A. Rapp, in Proc. Elliot Symp. Chemical Process Metallurgy, Cambridge, MA, 1990, p. 10.

  32. Y. Longa and M. Takemoto,Laser Processing of High-Cr−Ni alloys, unpublished research.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Longa, Y., Takemoto, M. The yttrium effect on the corrosion resistance of CO2-laser processed MCrAlY coatings. Oxid Met 41, 301–321 (1994). https://doi.org/10.1007/BF01113368

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113368

Key Words

Navigation