Skip to main content
Log in

Evaluation of the contribution from triply excited intermediates to the fourth-order perturbation theory energy on Intel distributed memory supercomputers

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

Three previously reported algorithms for the evaluation of the fourth-order triple excitation energy component in many-body perturbation theory have been compared. Their implementation on current Intel distributed memory parallel computers has been investigated. None of the algorithms, which were developed for shared memory computer architectures, performed well since they lead to prohibitive IO demands. A new algorithm suitable for distributed memory machines is suggested and its implementation on two Intel i860 supercomputers is described. A high level of parallelism is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilson S (1978) in: Saunders VR (ed) Correlated wave functions. Proc Daresbury Lab Study Weekend. SRC Daresbury Laboratory

  2. Wilson S, Silver DM (1979) Int J Quantum Chem 15:683

    Google Scholar 

  3. Wilson S, Saunders VR (1979) J Phys B At Mol Phys 12:L403; (1980)ibid 13:1505

    Google Scholar 

  4. Wilson S (1979) J Phys B At. Mol Phys 123:L657; (1980)ibid 13:1505

    Google Scholar 

  5. Guest MF, Wilson S (1980) Chem Phys Lett 72:49

    Google Scholar 

  6. Wilson S, Guest MF (1980) Chem Phys Lett 73:607

    Google Scholar 

  7. Frisch MJ, Krishnan R, Pople JA (1980) Chem Phys Lett 75:66

    Google Scholar 

  8. Krishnan R, Frisch MJ, Pople JA (1980) J Chem Phys 72:4244

    Google Scholar 

  9. Wilson S, Saunders VR (1980) Comput Phys Commun 19:293

    Google Scholar 

  10. Wilson S, Guest MF (1981) Molec Phys 43: 1331

    Google Scholar 

  11. Noga J (1983) Comput Phys Commun 29:117

    Google Scholar 

  12. Lee YS, Kucharski SA, Bartlett RJ (1984) J Chem Phys 81:5906

    Google Scholar 

  13. Raghavachari K (1985) J Chem Phys 82:4607

    Google Scholar 

  14. Urban M, Noga J, Cole SJ, Bartlett RJ (1985) J Chem Phys 83:4041

    Google Scholar 

  15. Urban M, Cernusak I, Kello V, Noga J (1987) in: Electron correlation in atoms and molecules, Meth Comput Chem 1:117

    Google Scholar 

  16. Noga J, Bartlett RJ (1987) J Chem Phys 86:7041

    Google Scholar 

  17. Scuseria GE, Schaefer HF (1988) Chem Phys Lett 152:382

    Google Scholar 

  18. Adamowitz L, Bartlett RJ (1988) Phys Rev A37:1

    Google Scholar 

  19. Dupuis M, Mougenot P, Watts JD, Hurst GJB, Villar HO (1989) in: Clementi E (ed) MOTECC modern techniques in computational chemistry. Escom, Leiden

    Google Scholar 

  20. Watts JD, Dupuis M (1989) IBM Technical Report KGN-197, August 16, 1989

  21. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479

    Google Scholar 

  22. Lee TJ, Rendell AP, Taylor PR (1990) J Chem Phys 92:489

    Google Scholar 

  23. Lee TJ, Scuseria GE (1990) J Chem Phys 93:489

    Google Scholar 

  24. Scuseria GE, Lee TJ (1990) J Chem Phys 93:5851

    Google Scholar 

  25. Bartlett RJ, Watts JD, Kucharski SA, Noga J (1990) Chem Phys Lett 165:513

    Google Scholar 

  26. Baker DJ, Moncrieff D, Wilson S (1990) in: Evans RG, Wilson S (eds) Supercomputational science. Plenum Press, NY

    Google Scholar 

  27. Lee TJ, Rice JE (1991) J Chem Phys 94:1215

    Google Scholar 

  28. Baker DJ, Moncrieff D, Saunders VR, Wilson S (1991) Comput Phys Commun 62:25

    Google Scholar 

  29. Rendell AP, Lee TJ, Komornicki A (1991) Chem Phys Lett 178:462

    Google Scholar 

  30. Moncrieff D, Saunders VR, Wilson S (submitted) Int J Supercomputer Appln

  31. Moncrieff D, Saunders VR, Wilson S (1991) Parallel Computing 17:773

    Google Scholar 

  32. Wilson S (1992) in: Wilson S, Dierchsen GHF (eds) Methods in computational molecular physics. Plenum Press, NY

    Google Scholar 

  33. Mårtensson-Pendrill AM, Wilson S (in preparation)

  34. Wilson S, Moncrieff D (submitted) Supercomputer

  35. Moncrieff D, Saunders VR, Wilson S (submitted) Comput Phys Commun

  36. Moncrieff D, Saunders VR, Wilson S, Rutherford Appleton Laboratory Report RA-91-064

  37. Bartlett RJ, Shavitt I, Purvis II G (1979) J Chem Phys 71:281

    Google Scholar 

  38. Cullen JM, Zerner MC (1982) Theoret Chim Acta 61:203

    Google Scholar 

  39. Almlöf J (1991) Chem Phys Lett 181:319

    Google Scholar 

  40. Paldus J (1992) in: Wilson S, Dierchsen GHF (eds) Methods in computational molecular physics. Plenum Press, NY

    Google Scholar 

  41. Paldus J, Čižek J, Shavitt I (1972) Phys Rev A5:50

    Google Scholar 

  42. Wilson S (ed) (1989) Concurrent computation in chemical calculations. Meth Comput Chem 3, Plenum Press, NY

    Google Scholar 

  43. Saunders VR (1990) in: Evans RG, Wilson S (eds) Supercomputational science. Plenum Press, NY

    Google Scholar 

  44. Saunders VR, Wilson S (in press) Parallel Computing

  45. Guest MF, Sherwood P, van Lenthe JH, Theoret Chim Acta (this issue)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rendell, A.P., Lee, T.J., Komornicki, A. et al. Evaluation of the contribution from triply excited intermediates to the fourth-order perturbation theory energy on Intel distributed memory supercomputers. Theoret. Chim. Acta 84, 271–287 (1993). https://doi.org/10.1007/BF01113267

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113267

Key words

Navigation