Skip to main content
Log in

Analysis of the interaction energy in the Cu+-H2O and Cl-H2O systems, with CP corrections to the BSSE of the separate terms, and MC simulations of the aqueous systems with and without CP corrections

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

The interaction energyΔE of the systems Cu+-H2O and Cl-H2O has been computed over a wide range of distances and orientations with the MINI-1 basis set in the SCF approximation. The interaction energy has been decomposed according to the Kitaura-Morokuma scheme, with and without counterpoise (CP) corrections to the basis set superposition error. The importance of this correction is analysed by its effect upon Monte Carlo calculations of the Cu+-water and Cl-water systems, using two-body potentials without and with CP corrections. The effect of CP corrections on theΔE analysis is similar to that found in other systems of analogous composition (of the general type ion plus neutral ligands), but with significant differences in the details. The effect of the CP corrections to the interaction potential, and then on the results of the Monte Carlo simulations, is small for the Cu+ ion, but remarkable for the Cl ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kolos W (1979) Theor Chim Acta 151:219

    Google Scholar 

  2. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Google Scholar 

  3. Sokalski WA, Roszak S, Hariharan C, Kaufman JJ (1983) Int J Quant Chem 23:847

    Google Scholar 

  4. Cammi R, Bonaccorsi R, Tomasi J (1985) Theor Chim Acta 68:271

    Google Scholar 

  5. Hayes IC, Stone AJ (1984) Mol Phys 53:83

    Google Scholar 

  6. Gutowski M, Duijneveldt FB van, Chalasinski G, Piela L (1987) Mol Phys 61:233

    Google Scholar 

  7. Tomasi J, Alagona G, Bonaccorsi R, Ghio C, Cammi R. In: Maksic Z (ed) Theoretical Models of Chemical Bonding. Part 3, Springer, Berlin, Heidelberg, New York, 1990

    Google Scholar 

  8. Cordeiro MNDS, Gomes JANF, Gonzàlez-Lafont A, Lluch JM, Oliva A, Bertrán J (1988) J Chem Soc Faraday Trans 2 84:693

    Google Scholar 

  9. Kitaura K, Morokuma K (1976) Int J Quant Chem 10:325

    Google Scholar 

  10. Andzelm J, Huzinaga S, Klobukowsky M, Radzio-Andzelm E, Sakay Y, Tatewaki KI. In: Huzinaga S (ed) Gaussian Basis Set For Molecular Calculations, Elsevier, Amsterdam 1984

    Google Scholar 

  11. Tatewaki KI, Huzinaga S (1980) J Comp Chem 1:202

    Google Scholar 

  12. Sauer J, Hobza P (1984) Theor Chim Acta 65:291

    Google Scholar 

  13. Benedict WS, Gailar N, Plyler EK (1956) J Chem Phys 24:1139

    Google Scholar 

  14. Peterson MR, Poirier RA, Monstergauss, Department of Chemistry, University of Toronto, Ontario, Canada,

  15. Valleau JP, Wittington SG. In: Berne BJ (ed) Statistical Mechanics, vol. A, chap. 4 and chap. 5, Plenum Press, New York, 1977; Wood WW, In: Temperley HNV, Rowlinson JS, Rushbrooke GS, Physics of Simple Liquids, chap. 5 (eds). North-Holland, Amsterdam, 1968

    Google Scholar 

  16. Matsuoka O, Clementi E, Yoshimine M (1976) J Chem Phys 64:1351

    Google Scholar 

  17. Clementi E, Corongiu G (1983) Int J Quant Chem Biol Symp 10:31; Wojcik M, Clementi E (1986) J Chem Phys 84:5970; Wojcik M, Clementi E (1986) J Chem Phys 85:3544; Wojcik M, Clementi E (1986) J Chem Phys 85:6085

    Google Scholar 

  18. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) J Chem Phys 21:1087

    Google Scholar 

  19. Cimiraglia R, Tomasi J, Cammi R, Hofmann H-J (1989) Chem Phys 136:399

    Google Scholar 

  20. Cammi R, Hofmann H-J, Tomasi J (1989) Theor Chim Acta 76:297

    Google Scholar 

  21. Legon AC, Miller DJ (1987) Chem Soc Rev 16:467

    Google Scholar 

  22. Dacre PD (1987) J Chem Phys 80:5677

    Google Scholar 

  23. Jeziorski B, Kolos W. In: Ratajczak H, Orville-Thomas WJ (eds) Molecular Interactions. vol. 3, Wiley, Chichester, 1982

    Google Scholar 

  24. Bonaccorsi R, Scrocco E, Tomasi J (1976) Theor Chim Acta 43:63

    Google Scholar 

  25. Miller Francl M (1985) J Phys Chem 89:428

    Google Scholar 

  26. Kaplan IG, Theory of Molecular Interactions. Elsevier, Amsterdam, 1986

    Google Scholar 

  27. Latajka Z, Scheiner S (1987) J Comp Chem 8:663

    Google Scholar 

  28. Lenthe JH van, Duijneveldt-van de Rijdt JCM van, Duijneveldt FB van (1987) Adv Chem Phys 69:521

    Google Scholar 

  29. Tolosa S, Esperilla JJ, Espinosa J, Olivares del Valle FJ (1988) Chem Phys 127:65; Olivares del Valle FJ, Tolosa S, Ojalvo EA, Espinosa J (1988) Chem Phys 127:343

    Google Scholar 

  30. Alagona G, Ghio C, Latajka Z, Tomasi J (1990) J Phys Chem 94:2267

    Google Scholar 

  31. Alagona G, Bonaccorsi R, Ghio C, Tomasi J (1986) J Mol Struct (Theochem) 135:39

    Google Scholar 

  32. Hofmann H-J, Hobza P, Cammi R, Tomasi J, Zahradník R (1989) J Mol Struct (Theochem) 201:339

    Google Scholar 

  33. Alagona G, Ghio C, Cammi R, Tomasi J. In: Maruani J (ed) Molecules in Physics, Chemistry, and Biology, vol. II, p. 507, Reidel, Dordrecht, 1988; Alagona G, Ghio C, Cammi R, Tomasi J (1987) Int J Quant Chem 32:227

    Google Scholar 

  34. Alagona G, Ghio C (1990) J Comp Chem 11:930

    Google Scholar 

  35. Neilson GW, Enderby JE (1979) Annu Rep Prog Chem Sect. C 76:185; Enderby JE, Neilson GW. In: Franks F (ed) Water. A Comprehensive Treatise, vol. 6, chap. 1, Plenum Press, New York, 1979. 2

    Google Scholar 

  36. Magini M (1981) J Chem Phys 74:2523.

    Google Scholar 

  37. Pálinkas G, Radnai T, Dietz W, Szász GyI, Heinzinger K (1982) Z Naturforsch. A 37A:1049; Probst MM, Radnai T, Heinzinger K, Bopp P, Rode M (1985) J Phys Chem 89:753

    Google Scholar 

  38. Enderby JE, Neilson GW (1981) Rep Progr Phys 44:594; Enderby JE (1985) Pure Appl Chem 57:1025

    Google Scholar 

  39. Kistenmacher HP, Clementi E (1974) J Chem Phys 61:799; Clementi E, Barsotti R, Fromm J, Watts RO (1976) Theor Chim Acta 43:101; Clementi E, Barsotti R (1989) Chem Phys Lett 59:21.

    Google Scholar 

  40. Mezei M, Beveridge DL (1981) J Chem Phys 74:6902.

    Google Scholar 

  41. Chandrasekhar J, Spellmeyer DC, Jorgensen WL (1984) J Am Chem Soc 106:903.

    Google Scholar 

  42. Lybrand TP, Kollman PA (1985) J Chem Phys 83:2923

    Google Scholar 

  43. Impey RW, Madden PA, McDonald IR (1983) J Phys Chem 87:5071.

    Google Scholar 

  44. Bounds DG (1985) Mol Phys 54:1335.

    Google Scholar 

  45. Heinzinger K, Vogel PG (1976) Z Naturforsch 29a:463; Palinkas G, Riede WO, Heinzinger K (1977) Z Naturforsch 32a:1137; Szász GyI, Heinzinger K (1979) Z Naturforsch 34a:840; Bopp P, Dietz W, Heinzinger K (1979) Z Naturforsch 34a:1424; Szász GyI, Dietz W, Heinzinger K, Pálinkas G, Radnai T (1982) Chem Phys Lett 92:388; Probst MM, Radnai T, Heinzinger K, Bopp P, Rode M (1985) J Phys Chem 89:753; Heinzinger K (1985) Pure Appl Chem 57:1031; Spohr E, Pálinkas G, Heinzinger K, Bopp P, Probst MM (1988) J Phys Chem 92:6754

    Google Scholar 

  46. Pettitt BM, Rossky PJ (1986) J Chem Phys 84:5836; Brooks III CL (1987) J Chem Phys 86:5156

    Google Scholar 

  47. Alagona G, Ghio C, Tomasi J (1989) J Phys Chem 93:5401

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natália, M., Cordeiro, D.S., Cammi, R. et al. Analysis of the interaction energy in the Cu+-H2O and Cl-H2O systems, with CP corrections to the BSSE of the separate terms, and MC simulations of the aqueous systems with and without CP corrections. Theoret. Chim. Acta 82, 165–187 (1992). https://doi.org/10.1007/BF01113250

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113250

Key words

Navigation