Advertisement

Theoretica chimica acta

, Volume 84, Issue 3, pp 217–235 | Cite as

Molecular structure of mono- and dicarbonyls of rhodium and palladium

  • I. Pápai
  • A. Goursot
  • A. St-Amant
  • D. R. Salahub
Article

Summary

Density Functional Theory has been applied to the study of the molecular structure of neutral and positively charged mono- and dicarbonyls of rhodium and palladium. The calculated optimized geometries, dissociation energies and normal frequencies are reported for the MCO, MCO+, M(CO)2 and M(CO) 2 + systems (where M=Rh and Pd), and the trends are discussed in detail. For neutral carbonyls, we interpret the M–C bond strength in terms of σ repulsion, which must be avoided, and π attraction. These are related to the metal atom properties, such as the atomic splittings and the atomic ionization energies. In ionic carbonyls, the bonding is characterized by electrostatic attraction and σ repulsion. The rhodium carbonyls are generally found to be more stable than the corresponding palladium carbonyls. The palladium dicarbonyls are found to be linear, while both linear and bent structures are stable for rhodium dicarbonyls. An interpretation of these trends is made.

Key words

Rhodium Palladium Dicarbonyls of Rh/Pd Monocarbonyls of Rh/Pd Density functional theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Srivastava RD (1988) in: Heterogeneous catalytic science. CRC Press, Boca RatonGoogle Scholar
  2. 2.
    Stevenson SA, Raupp GB, Dumesic JA, Tauster SJ, Baker RTK (1987) in: Stevenson SA, Dumesic JA, Baker RTK, Ruckenstein E (eds) Metal-support interactions in catalysis, sintering, and redispersion. Van Nostrand Reinhold, NY, Chap 6, p 55Google Scholar
  3. 3.
    Metal-ligand bonding energetics in organotransition metal compounds. Polyhedron Symposia-In-Print Number 6, Polyhedron 7:1405 (1988)Google Scholar
  4. 4.
    Andrews L, Moskovits M (eds) (1989) Chemistry and physics of matrix-isolated species. North-Holland, AmsterdamGoogle Scholar
  5. 5.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864Google Scholar
  6. 6.
    Kohn W, Sham LJ (1965) Phys Rev 140:A1133Google Scholar
  7. 7.
    Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry. Wiley, NYGoogle Scholar
  8. 8.
    Weltner W, Van Zee RJ (1989) in: Salahub DR, Zerner MC (eds) The challenge of d and f electrons, ACS, Washington, Chap 15, p 211Google Scholar
  9. 9.
    Barnes LA, Rossi M, Bauschlicher CW (1991) J Chem Phys 94:2031Google Scholar
  10. 10.
    Barnes LA, Bauschlicher CW (1989) J Chem Phys 91:314Google Scholar
  11. 11.
    Bauschlicher CH, Barnes LA, Langhoff SR (1988) Chem Phys Lett 151:391Google Scholar
  12. 12.
    Blomberg M, Brandemark U, Johansson J, Siegbahn P, Wenneberg J (1988) J Chem Phys 88:4324Google Scholar
  13. 13.
    Ziegler T, Tschinke V, Ursenbach C (1987) J Am Chem Soc 109:4825Google Scholar
  14. 14.
    Dewar MJS (1951) Bull Soc Chem Fr 18C:79Google Scholar
  15. 15.
    Chatt J, Duncanson LA (1953) J Chem Soc 2939Google Scholar
  16. 16.
    Bagus PS, Nelin CJ, Bauschlicher CW (1983) Phys Rev B28:5423Google Scholar
  17. 17.
    Barnes LA, Rosi M, Bauschlicher CW (1990) J Chem Phys 93:609Google Scholar
  18. 18.
    Sambe H, Felton RH (1975) J Chem Phys 62:1122Google Scholar
  19. 19.
    Dunlap BI, Conolly JWD, Sabin JR (1979) J Chem Phys 71:3396Google Scholar
  20. 20.
    Andzelm J, Radzio E, Salahub DR (1985) J Chem Phys 83:4573Google Scholar
  21. 21.
    Fournier R, Andzelm J, Salahub DR (1989) J Chem Phys 90:6371Google Scholar
  22. 22.
    St-Amant A, Salahub DR (1990) Chem Phys Lett 169:387Google Scholar
  23. 23.
    St-Amant A (1991) PhD Thesis, Université de MontréalGoogle Scholar
  24. 24.
    Pápai I, St-Amant A, Ushio J, Salahub DR (1990) Int J Quant Chem S24:29Google Scholar
  25. 25.
    Becke AD (1988) J Chem Phys 88:2547Google Scholar
  26. 26.
    Vosko SH (1980) Wilk L, Nausair M, Can J Phys 58:1200Google Scholar
  27. 27.
    Perdew JP, Wang Yue (1986) Phys Rev B33:8800Google Scholar
  28. 28.
    Perdew JP (1986) Phys Rev B33:8822; (1986) erratum: 38:7406Google Scholar
  29. 29.
    Becke AD in Ref. [8], Chap 12, p 165Google Scholar
  30. 30.
    Mlynarski P, Salahub DR (1991) Phys Rev B43:1399Google Scholar
  31. 31.
    Herzberg G (1945) Infrared and Raman spectra of polyatomic molecules. Van Nostrand, NYGoogle Scholar
  32. 32.
    Salahub DR (1987) Adv Chem Phys 69:447Google Scholar
  33. 33.
    Raghavachari K, Trucks GW (1989) J Chem Phys 91:1061Google Scholar
  34. 34.
    Ziegler T, Rauk A, Baerends EJ (1977) Theoret Chim Acta 43:261Google Scholar
  35. 35.
    von Barth U (1979) Phys Rev A20:1693Google Scholar
  36. 36.
    Wood JH (1980) J Phys B Atom Molec Phys 13:1Google Scholar
  37. 37.
    Kutzler FW, Painter GS (1987) Phys Rev Lett 59:1285Google Scholar
  38. 38.
    Knight LB, Weltner W (1971) J Mol Spectr 40:317Google Scholar
  39. 39.
    Malmberg C, Scullman R, Nylen P (1969) Ark Phys 39:495Google Scholar
  40. 40.
    Kaving B, Scullman R (1969) J Mol Spectr 32:475Google Scholar
  41. 41.
    Huber KP, Herzberg G (1979) Molecular spectra and molecular structure. IV. Constants of Diatomic Molecules. Van Nostrand Reinhold, NYGoogle Scholar
  42. 42.
    Tolbert MA, Beauchamp JL (1986) J Phys Chem 90:5015Google Scholar
  43. 43.
    Shim I, Gingerich KA (1982) J Chem Phys 76:3833Google Scholar
  44. 44.
    Shim I, Gingerich KA (1984) J Chem Phys 81:5937Google Scholar
  45. 45.
    Balasubramanian K (1990) J Chem Phys 93:8061Google Scholar
  46. 46.
    Balasubramanian K, Liao D (1988) J Chem Phys 88:317Google Scholar
  47. 47.
    Balasubramanian K, Feng PY, Liao MZ (1987) J Chem Phys 87:3981Google Scholar
  48. 48.
    Langhoff SR, Pettersson LGM, Bauschlicher CW, Partridge H (1987) J Chem Phys 86:268Google Scholar
  49. 49.
    Shim I, Gingerich KA (1985) Surf Sci 156:623Google Scholar
  50. 50.
    Russo N, Andzelm J, Salahub DR (1987) Chem Phys 114:331Google Scholar
  51. 51.
    Mayer I (1983) Chem Phys Lett 97:270; (1985) Theoret Chim Acta 67:315; (1986) Int J Quant Chem 29:73, 477Google Scholar
  52. 52.
    Kündig EP, Moskovits M, Ozin GA (1972) Can J Chem 50:3587Google Scholar
  53. 53.
    Pacchioni G, Koutecky J, Fantucci P (1982) Chem Phys Lett 92:486Google Scholar
  54. 54.
    Koutecky J, Pacchioni G, Fantucci P (1985) Chem Phys 99:87Google Scholar
  55. 55.
    Pacchioni G, Koutecky J (1987) J Phys Chem 91:2658Google Scholar
  56. 56.
    Rohlfing CM, Hay PJ (1985) J Chem Phys 83:4641Google Scholar
  57. 57.
    Møller C, Plesset MS (1934) Phys Rev 46:618Google Scholar
  58. 58.
    Blomberg MRA, Lebrilla CB, Siegbahn PEM (1988) Chem Phys Lett 150:522Google Scholar
  59. 59.
    Roos BO, Taylor PR, Siegbahn PEM (1980) Chem Phys 48:157Google Scholar
  60. 60.
    Siegbahn PEM (1983) Int J Quant Chem 23:1869Google Scholar
  61. 61.
    Chong DP, Langhoff SR (1986) J Chem Phys 84:5606Google Scholar
  62. 62.
    Smith GW, Carter EA (1991) J Phys Chem 95:2327Google Scholar
  63. 63.
    Boys SF, Bernardi F (1970) Mol Phys 19:553Google Scholar
  64. 64.
    McKee ML, Worley SD (1988) J Phys Chem 92:3699Google Scholar
  65. 65.
    Mains GJ, White JM (1991) J Phys Chem 95:112Google Scholar
  66. 66.
    Bauschlicher CH, Langhoff SR (1990) Int Rev Phys Chem 9:149Google Scholar
  67. 67.
    Martin RL, Hay PJ (1981) J Chem Phys 75:4539Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • I. Pápai
    • 1
  • A. Goursot
    • 2
  • A. St-Amant
    • 1
  • D. R. Salahub
    • 1
  1. 1.Department de ChimieUniversité de MontréalMontréalCanada
  2. 2.Laboratoire de Chimie Organique PhysiqueURA 418 CNRS, ENSCMMontpellierFrance

Personalised recommendations