Advertisement

Theoretica chimica acta

, Volume 84, Issue 3, pp 181–194 | Cite as

Water dimer in liquid water

  • J. Bertran
  • M. F. Ruiz-López
  • D. Rinaldi
  • J. L. Rivail
Article

Summary

A Self-Consistent Reaction Field Model is used to study the effect of the molecular environment on the electronic distribution and on the equilibrium geometry of the water dimer in liquid water. Computations are performed at the 6-311G++(2d,2p) MP2 level. Comparison of the results for the monomer and the dimer, in a vacuum and in the liquid, is made in order to gain a deeper insight on the cooperative phenomenon. The discussion emphasizes the trends which should be considered for deriving more sophisticated water-water potentials.

Key words

Water dimer Self-consistent reaction field Cooperative phenomenon Liquid state Water-water potential 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kleeberg H, Luck WAP (1989) Z Phys Chem (Leipzig) 613Google Scholar
  2. 2.
    Del Bene J, Pople JA (1973) J Chem Phys 58:3605Google Scholar
  3. 3.
    Owicki JC, Schipman LL, Scheraga HA (1975) J Phys Chem 79:1794Google Scholar
  4. 4.
    Clementi E (1976) Determination of liquid water structure. Lecture Notes in Chemistry, vol 2. Springer-Verlag, Berlin/HeidelbergGoogle Scholar
  5. 5.
    Barnes J, Finney JL, Nicholas JD, Ruiun JE (1979) Nature 282:459Google Scholar
  6. 6.
    Clementi E, Kolos W, Lie GC, Ranghino G (1980) Int J Quantum Chem XVII, 377Google Scholar
  7. 7.
    Schuster P, Karpfen A, Beyer A (1980) in: Ratajczak H, Orville-Thomas WJ (eds) Molecular interactions. Wiley NY, p 118Google Scholar
  8. 8.
    Newton MD (1983) J Phys Chem 87:4288Google Scholar
  9. 9.
    Scheiner S, Nagle JF (1983) J Phys Chem 87:4267Google Scholar
  10. 10.
    van Gunsteren WF, Berendsen HJC (1985) in: Hermans J (ed) Molecular dynamics and protein structure. Western Springs, Illinois, p 5Google Scholar
  11. 11.
    Koehler JEH, Saenger W, Lesyng B (1987) J Comput Chem 8:1090Google Scholar
  12. 12.
    Frisch MJ, Del Bene JE, Brinkley JS, Schaefer HF (1986) J Chem Phys 84:2279Google Scholar
  13. 13.
    Del Bene JE, Pople JA (1970) J Chem Phys 52:4858Google Scholar
  14. 14.
    Matsuoka O, Clementi E, Yoshimine M (1976) J Chem Phys 64:1351Google Scholar
  15. 15.
    Rahman A, Stillinger FH (1971) J Chem Phys 55:3336Google Scholar
  16. 16.
    Stillinger FH, Rahman A (1974) J Chem Phys 60:1545Google Scholar
  17. 17.
    Berendsen HJ, Postma JPM, van Gunsteren WF, Hermans J (1981) in: Pullman B (ed) Intermolecular forces. Reidel, Dordrecht, p 331Google Scholar
  18. 18.
    Berendsen HJ, Grigera J, Straatsma TP (1987) J Phys Chem 91:6269Google Scholar
  19. 19.
    Watanabe K, Klein ML (1989) Chem Phys 131:157Google Scholar
  20. 20.
    Jorgensen WL (1981) J Am Chem Soc 103:335Google Scholar
  21. 21.
    Jorgensen WL (1982) J Chem Phys 77:4156Google Scholar
  22. 22.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926Google Scholar
  23. 23.
    Clementi E, Corongiu G (1983) Int J Quantum Chem Symp 10:31Google Scholar
  24. 24.
    Detrich JH, Corongiu G, Clementi E (1984) Chem Phys Lett 112:426Google Scholar
  25. 25.
    Wojcik M, Clementi E (1986) J Chem Phys 84:5970Google Scholar
  26. 26.
    Wojcik M, Clementi E (1986) J Chem Phys 85:6085Google Scholar
  27. 27.
    Niesar U, Corongiu G, Huang MJ, Dupuis M, Clementi E (1989) Int J Quantum Chem Symp 23:421Google Scholar
  28. 28.
    Niesar U, Corongiu G, Clementi E, Kueller GR, Bhattacharya DK (1990) J Phys Chem 94:7949Google Scholar
  29. 29.
    Clementi E, Corongiu G, Buhattacharya DK, Feuston B, Frye D, Preiskorn A, Rizzo A, Xue W (1991) Chem Rev 91:679Google Scholar
  30. 30.
    Sprik M (1991) J Chem Phys 95:6762; (1991) J Phys Chem 95:2283Google Scholar
  31. 31.
    Caldwell J, Dang LX, Kollman PA (1990) J Am Chem Soc 112:9144Google Scholar
  32. 32.
    Sprik M, Klein ML (1988) J Chem Phys 89:7556Google Scholar
  33. 33.
    Cieplak P, Lybrand T, Kollman P (1990) J Chem Phys 92:6755Google Scholar
  34. 34.
    Ahlström P, Wallquist A, Engstrom S, Jonsson B (1989) Mol Phys 68:563Google Scholar
  35. 35.
    Lybrand TP, Kollman PA (1985) J Chem Phys 83:2923Google Scholar
  36. 36.
    Rullmann JAC, van Duijuen PTh (1983) Mol Phys 63:451Google Scholar
  37. 37.
    Wallqvist A, Ahlström P, Kalström G (1989) J Phys Chem 94:1649Google Scholar
  38. 38.
    Sprik M, Klein ML, Watanabe K (1990) J Phys Chem 94:6483Google Scholar
  39. 39.
    Straatsma TP, McCammon JA (1990) Mol Simul 5:181Google Scholar
  40. 40.
    Motakabbit KA, Berkowitz ML (1991) Chem Phys Lett 176:61Google Scholar
  41. 41.
    Millot C, Stone AJ submitted to Mol PhysGoogle Scholar
  42. 42.
    Bopp P, Jausco G, Heinzinger K (1983) Chem Phys Lett 98:129Google Scholar
  43. 43.
    Jaucso G, Bopp P, Heinzinger K (1984) Chem Phys 85:377Google Scholar
  44. 44.
    Lie GC, Clementi E (1986) Phys Rev A33:2679Google Scholar
  45. 45.
    Slanina Z (1991) Chem Phys 150:321Google Scholar
  46. 46.
    Rinaldi D, Rivail JL (1973) Theoret Chim Acta 32:57Google Scholar
  47. 47.
    Dyke TR, Mack KM, Muenter JS (1977) J Chem Phys 66:498Google Scholar
  48. 48.
    Odutola JA, Hu TA, Prinslow D, O'Dell SE, Dyke TR (1988) J Chem Phys 88:5352Google Scholar
  49. 49.
    Del Bene JE (1987) J Chem Phys 86:2110Google Scholar
  50. 50.
    Frish MJ, Pople JA, Del Bene JE (1985) J Phys Chem 89:3664Google Scholar
  51. 51.
    Diercksen GH, Kraemer WP, Roos BO (1975) Theoret. Chim Acta 36:249Google Scholar
  52. 52.
    Smith BJ, Swanton DJ, Pople JA, Schaefer III HF, Random L (1990) J Chem Phys 92:1240Google Scholar
  53. 53.
    Marsden CJ, Smith BJ, Pople JA, Schaefer III HF, Random L (1991) J Chem Phys 95:1825Google Scholar
  54. 54.
    Hobza P, Zahradnik (1988) Chem Rev 88:871Google Scholar
  55. 55.
    Buckingham AD, Fowler PW, Hutson JM (1988) Chem Rev 88:963Google Scholar
  56. 56.
    Szalewicz K, Cole SJ, Kolos W, Bartlett RJ (1988) J Chem Phys 89:3662Google Scholar
  57. 57.
    Honegger E, Lentwyler S (1988) J Chem Phys 88:2582Google Scholar
  58. 58.
    Boys SJ, Bernardi F (1970) Mol Phys 19:553Google Scholar
  59. 59.
    Olivares Del Valle FJ, Tolosa S, Lopez Pineiro A, Requena A (1985) J Comp Chem 6:39Google Scholar
  60. 60.
    Schwenke DW, Truhlar DC (1985) J Chem Phys 82:2418Google Scholar
  61. 61.
    Vos RJ, Hendriks R, van Duijnevelt FB (1990) J Comp Chem 11:1Google Scholar
  62. 62.
    Newton MD, Kestner NR (1983) Chem Phys Lett 94:198Google Scholar
  63. 63.
    Szczesuiak MM, Brenstein RJ, Cybulski SM, Scheiner S (1990) J Phys Chem 94:1781Google Scholar
  64. 64.
    Rybak S, Jeziorski B, Szalewicz K (1991) J Chem Phys 95:6576Google Scholar
  65. 65.
    Rivail JL, Rinaldi D (1976) Chem Phys 18:233Google Scholar
  66. 66.
    Rivail JL, Rinaldi D, Ruiz-Lopez MF (1991) in: Formosinho SJ, Arnaut L, Csizmadia I (eds) Theoretical and computational models for organic chemistry. Kluwer, Dordrecht, p 79–92Google Scholar
  67. 67.
    Costa Cabral B, Rinaldi D, Rivail JL (1984) CR Acad Sc Paris 198II:675Google Scholar
  68. 68.
    Rinaldi D, Rivail JL, Rguini N (1992) J Comp Chem 13:675Google Scholar
  69. 69.
    Benedict WS, Gailar N, Plyler EK (1956) J Chem Phys 24:1139Google Scholar
  70. 70.
    Sanchez Marcos E, Terryn B, Rivail JL (1985) J Phys Chem 89:4695Google Scholar
  71. 71.
    Thiessen WE, Narten AH (1982) J Chem Phys 77:2656Google Scholar
  72. 72.
    Clough A, Beers Y, Klein GP, Rothman LS (1973) J Chem Phys 59:2254Google Scholar
  73. 73.
    Coulson C, Zisenberg D (1966) Proc R Soc London Ser A291:445Google Scholar
  74. 74.
    Mayer I (1983) Chem Phys Lett 97:270; (1985) ibid 117:396; Mayer I (1986) Int J Quantum Chem 29:73, 477Google Scholar
  75. 75.
    Daudey JP (1974) Int J Quantum Chem 8:29Google Scholar
  76. 76.
    Curtis LA, Furuip DJ, Blander M (1979) J Chem Phys 71:2703Google Scholar
  77. 77.
    Reimers J, Watts R, Klein M (1982) Chem Phys 64:95Google Scholar
  78. 78.
    Curtis LA, Blander M (1988) Chem Rev 88:827Google Scholar
  79. 79.
    Bader RW, Ander SG, Duke AJ (1979) J Am Chem Soc 101:1389Google Scholar
  80. 80.
    Bader RW, Tal Y, Anderson SG, Nguyen-Dang TT (1980) Isr J Chem 19:8Google Scholar
  81. 81.
    Stone AJ (1990) in: Rivail JL (ed) Modelling of molecular structure and properties. Elsevier, Amsterdam, p 27–44Google Scholar
  82. 82.
    Claverie P (1978) in: Pullman B (ed) Intermolecular interactions. Wiley, NY, p 69–305Google Scholar
  83. 83.
    Stone AJ (1981) Chem Phys Lett 83:233Google Scholar
  84. 84.
    Stone AJ, Alderton M (1985) Mol Phys 56:1047Google Scholar
  85. 85.
    Hess O, Caffarel M, Huizoon M, Claverie P (1990) J Chem Phys 92:6049Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • J. Bertran
    • 1
  • M. F. Ruiz-López
    • 2
  • D. Rinaldi
    • 2
  • J. L. Rivail
    • 2
  1. 1.Department de QuímicaUniversitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Laboratoire de Chimie ThéoriqueUniversité de Nancy IVandoeuvre les NancyFrance

Personalised recommendations