Skip to main content
Log in

Constrained anisotropic dipole oscillator strength distribution techniques, and reliable results for anisotropic and isotropic dipole molecular properties, with applications to H2 and N2

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

Constrained anisotropic dipole oscillator strength distribution techniques are discussed and applied to obtain reliable results for a wide variety of the anisotropic and isotropic dipole properties of H2 and N2. These include the dipole oscillator strength sumsS k, k=2, 1, −1/2(−1/2) −2, −3, −4, ..., the logarithmic dipole sumsL k and mean excitation energiesI k, k=2(−1) − 2, and, as a function of wavelength, the dynamic polarizability and the associated anisotropy, the total depolarization ratio, the Rayleigh scattering cross section, and the Verdet constant. The anisotropic components of the DOSD for a molecule are obtained from a given recommended isotropic DOSD by using a constrained least squares procedure and a series of known anisotropic constraints. Assuming that sufficient input is available, the constrained DOSD approach used in this paper is the only available method for the reliable evaluation ofall the relevant anisotropic and isotropic dipole properties for a wide variety of atoms and molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zeiss GD, Meath WJ, MacDonald JCF, Dawson DJ (1977) Can J Phys 55:2080

    Google Scholar 

  2. Kumar A, Fairley GRG, Meath WJ (1985) J Chem Phys 83:70, and many references therein

    Google Scholar 

  3. Meath WJ, Margoliash DJ, Jhanwar BL, Koide A, Zeiss GD (1981) In: Pullman B (ed) Intermolecular forces. Reidel, Dordrecht, pp 101–115, and references therein

    Google Scholar 

  4. Jhanwar BL, Meath WJ, MacDonald JCF (1986) Radiat Res 106:288, and many references therein; (1983) Radiat Res 96:20

    Google Scholar 

  5. Margenau H (1931) Phys Rev 37:1425; (1939) 56:1000

    Google Scholar 

  6. Dalgarno A, Lynn N (1957) Proc Phys Soc A70:802; Dalgarno A, Kingston AE (1958) Proc Phys Soc 72:1053; (1959) 73:455; (1961) 78:607

    Google Scholar 

  7. Victor GA, Dalgarno A (1969) J Chem Phys 50:2535

    Google Scholar 

  8. Thomas GF, Meath WJ (1977) Molec Phys 34:113

    Google Scholar 

  9. Jhanwar BL, Meath WJ (1982) Chem Phys 67:185

    Google Scholar 

  10. Jhanwar BL, Meath WJ, MacDonald JCF (1981) Can J Phys 59:185; (1983) 61:1027

    Google Scholar 

  11. Jhanwar BL, Meath WJ (1984) Can J Chem 62:373

    Google Scholar 

  12. Kumar A, Meath WJ (1985) Can J Phys 63;417; (1985) Can J Chem 63:1616

    Google Scholar 

  13. Pazur RJ, Kumar A, Thuraisingham RA, Meath WJ (1988) Can J Chem 66:615

    Google Scholar 

  14. Kumar A, Meath WJ (1991) Molec Phys, in press

  15. Meath WJ, Kumar A (1990) Int J Quantum Chem S24:501

    Google Scholar 

  16. Ford AL, Browne JC (1973) Phys Rev A7:418

    Google Scholar 

  17. Bishop DM, Cheung LM (1980) J Chem Phys 72:5125

    Google Scholar 

  18. Rychlewski J (1983) J Chem Phys 78:7252

    Google Scholar 

  19. Langhoff PW, Gordon RG, Karplus M (1971) J Chem Phys 55:2126

    Google Scholar 

  20. Zeiss GD, Meath WJ (1976) Molec Phys 33:1155

    Google Scholar 

  21. Alms GR, Burnham AK, Flygare WH (1975) J Chem Phys 63:3321

    Google Scholar 

  22. Zeiss GD, Meath WJ, MacDonald JCF, Dawson DJ (1975) Radiat Res 63:64; (1977) Radiat Res 70:284

    Google Scholar 

  23. Hirschfelder JO, Byers Brown W, Epstein ST (1964) Adv Quant Chem 1:225

    Google Scholar 

  24. Dalgarno A (1966) In: Wilcox CH (ed) Perturbation theory and its applications in quantum mechanics. Wiley, New York, pp 145–183

    Google Scholar 

  25. Fano U, Cooper JW (1968) Rev Mod Phys 40:441; (1969) Rev Mod Phys 41:724

    Google Scholar 

  26. Inokuti M (1971) Rev Mod Phys 43:297

    Google Scholar 

  27. Bridge NJ, Buckingham AD (1966) Proc Roy Soc A295:334

    Google Scholar 

  28. Dalgarno A, Degges T, Williams DA (1967) Proc Phys Soc 92:291

    Google Scholar 

  29. Serber R (1932) Phys Rev 41:489

    Google Scholar 

  30. Ingersoll LR, Liebenberg DH (1956) J Opt Soc Am 46:538

    Google Scholar 

  31. Darwin CG, Watson WH (1927) Proc Roy Soc A114:474

    Google Scholar 

  32. Becquerel H (1897) CR Acad Sci 125:679

    Google Scholar 

  33. Huber KP, Herzberg G (1978) Constants of diatomic molecules. Van Nostrand Reinhold, New York

    Google Scholar 

  34. Mulder F, Meath WJ (1981) Molec Phys 42:629

    Google Scholar 

  35. Kolos W, Wolniewicz L (1964) J Chem Phys 41:3663

    Google Scholar 

  36. Ivanov AI, Rebane TK (1988) Opt Spectrosc 65:16

    Google Scholar 

  37. Meyer W (1976) Chem Phys 17:27

    Google Scholar 

  38. Wolniewicz L (1966) J Chem Phys 45:515

    Google Scholar 

  39. Kosman WM, Wallace S (1985) J Chem Phys 82:1385

    Google Scholar 

  40. Maroulis G, Thakkar AJ (1988) J Chem Phys 88:7623

    Google Scholar 

  41. Langhoff SR, Bauschlicher Jr CW, Chong DP (1983) J Chem Phys 78:5287

    Google Scholar 

  42. Margoliash DJ, Meath WJ (1978) J Chem Phys 68:1426

    Google Scholar 

  43. Margoliash DJ, Proctor TR, Zeiss GD, Meath WJ (1978) Molec Phys 35:747

    Google Scholar 

  44. Kumar A, Meath WJ, upon request

  45. Martin PHS, Henneker WH, McKoy V (1975) J Chem Phys 62:69

    Google Scholar 

  46. Geertsen J, Oddershede J, Sabin JR (1988) Phys Rev A34:1104

    Google Scholar 

  47. Gerhart DE (1975) J Chem Phys 62:821

    Google Scholar 

  48. International Commission on Radiation Units and Measurements, Stopping Powers for Electrons and Positrons, ICRU Report No 37 (Bethesda, MD, 1984) p 21

  49. Koch J (1912) Ark Mat Astr Fys 8:20

    Google Scholar 

  50. Kirn M (1921) Ann Physik 64;566

    Google Scholar 

  51. Smith PL, Huber MCE, Parkinson WH (1976) Phys Rev A13:1422

    Google Scholar 

  52. Gill P, Heddle DWO (1963) J opt Soc Am 53:847

    Google Scholar 

  53. MacAdam KB, Ramsay NF (1972) Phys Rev A6:898

    Google Scholar 

  54. Peck ER, Khanna BN (1966) J opt Soc Am 56:1059

    Google Scholar 

  55. Langhoff PW (1972) J Chem Phys 57:2604

    Google Scholar 

  56. Stroyer-Hansen T, Svendsen EN (1986) J Chem Phys 84:1950

    Google Scholar 

  57. Rowell RL, Aval GM, Barrett JJ (1972) J Colloid Interface Sci 39:472

    Google Scholar 

  58. Baas F, Van den Hout KD (1979) Physica 95A:597

    Google Scholar 

  59. Burnham AK, Buxton LW, Flygare WH (1977) J Chem Phys 67:4990

    Google Scholar 

  60. Belton MJS, McElroy MB, Price MJ (1971) Astrophys J 164:191

    Google Scholar 

  61. Wallace L (1972) Astrophys J 176:249

    Google Scholar 

  62. Dalgarno A, Williams DA (1962) Mon Not R Astron Soc 124:313

    Google Scholar 

  63. Bishop DM, Cybulski SM (1990) J Chem Phys 93:590

    Google Scholar 

  64. Cuthbertson C, Cuthbertson M (1909) Proc Roy Soc A83:151

    Google Scholar 

  65. Siertsema LH (1899) Arch neerl Sci 2:291

    Google Scholar 

  66. Zeiss GD, Meath WJ, MacDonald JCF, Dawson DJ (1980) Molec Phys 39:1055

    Google Scholar 

  67. Kramer HL (1970) J Chem Phys 53:2783; Pack RT (1970) Chem Phys Lett 5:257

    Google Scholar 

  68. Bischel H (1972) In: American Physics Handbook, 3rd ed. Sect 8d, McGraw-Hill, New York, pp 142–189

    Google Scholar 

  69. Fano U (1963) Annu Rev Nucl Sci 13:1

    Google Scholar 

  70. Bischel H (1974) Phys Rev A9:571

    Google Scholar 

  71. Mozumder A, LaVerne JA (1985) J Phys Chem 89:930

    Google Scholar 

  72. Diercksen GHF, Oddershede J, Paidarova I, Sabin J (1991) Int J Quant Chem 39:755

    Google Scholar 

  73. Mulder F, Meath WJ (1981) Molec Phys 42:629

    Google Scholar 

  74. Jhanwar BL, Meath WJ (1980) Molec Phys 41:1061

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by a grant from the Natural Sciences and Engineering Research Council of Canada

On leave from Department of Physics, Meerut University, Meerut, India

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., Meath, W.J. Constrained anisotropic dipole oscillator strength distribution techniques, and reliable results for anisotropic and isotropic dipole molecular properties, with applications to H2 and N2 . Theoret. Chim. Acta 82, 131–152 (1992). https://doi.org/10.1007/BF01113134

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113134

Key words

Navigation