Theoretica chimica acta

, Volume 83, Issue 5–6, pp 389–416

Electronic structure and optical spectra of transition metal complexes by the effective Hamiltonian method

  • A. V. Soudackov
  • A. L. Tchougreeff
  • I. A. Misurkin


A semiempirical effective Hamiltonian treatment is proposed for transition metal complexes, taking into accountd-electron correlations, weak covalency of the metal-ligand bonds and the electronic structure of the ligand sphere. The technique uses the variation wave function which differs from the usual Hartree-Fock antisymmetrized product of molecular orbitals extended over the whole complex. The scheme is implemented and parameters describing the metal-ligand interactions are adjusted to reproduced-d-excitation spectra of a number of octahedral MF64− (M=Mn, Fe, Co, Ni) anions, Mn(FH)62+ cation, CoCl64− anion, and a tetrahedral CoCl42− anion. The values of the parameters are reasonable, thus confirming the validity of the proposed scheme.

Key words

Electronic structure Transition metal complexes d-d-excitation spectra Effective Hamiltonian 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bethe HA (1972) Ann d Phys 3:133Google Scholar
  2. 2.
    Jorgensen CK (1971) Modern aspects of ligand field theory. North-Holland, AmsterdamGoogle Scholar
  3. 3.
    Sviridov DT, Smirnov YuF (1977) Theory of the optical spectra of transition metal ions. Nauka, Moscow (in Russian)Google Scholar
  4. 4.
    Ballhausen CJ (1962) Introduction to ligand field theory. McGraw-Hill, NYGoogle Scholar
  5. 5.
    Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Clarendon Press, OxfordGoogle Scholar
  6. 6.
    Lever ABP (1986) Inorganic electronic spectroscopy. Elsevier, AmsterdamGoogle Scholar
  7. 7.
    Roothaan CCJ (1951) Rev Mod Phys 23:69Google Scholar
  8. 8.
    Bobrowicz FW, Goddard WA III (1977) in: Schaefer HF III (ed) Methods of electronic structure theory. Plenum Press, NY, p 79Google Scholar
  9. 9.
    Schilling JB, Goddard WA III, Beauchamp JL (1986) J Am Chem Soc 108:582Google Scholar
  10. 10.
    Schilling JB, Goddard WA III, Beauchamp JL (1987) J Phys Chem 91:5616Google Scholar
  11. 11.
    Schilling JB, Goddard WA III, Beauchamp JL (1987) J Am Chem Soc 109:5565Google Scholar
  12. 12.
    Newton JE, Hall MB (1984) Inorg Chem 23:4627Google Scholar
  13. 13.
    Newton JE, Hall MB (1985) Inorg Chem 24:2573Google Scholar
  14. 14.
    Pierloot K, Vanquickenborne LG (1990) J Chem Phys 93:4154Google Scholar
  15. 15.
    Rosi M, Bauschlicher CW Jr, Langhoff SR, Partridge H (1990) J Phys Chem 94:8656Google Scholar
  16. 16.
    Morokuma K (1990) Inorg Chem 29:3110Google Scholar
  17. 17.
    Filatov MJ, Gritsenko OV, Zhidomirov GM (1987) Theor Chim Acta 72:211Google Scholar
  18. 18.
    Blyholder G, Head J, Ruette F (1982) Theor Chim Acta 60:429Google Scholar
  19. 19.
    Zerner MC, Loew GH, Kirchner RF, Mueller-Westerhoff UT (1980) J Am Chem Soc 102:589Google Scholar
  20. 20.
    Edwards WD, Weiner B, Zerner MC (1988) J Phys Chem 92:6188Google Scholar
  21. 21.
    Edwards WD, Weiner B, Zerner MC (1986) J Am Chem Soc 108:2196Google Scholar
  22. 22.
    Kotzian M, Rösch N, Schröder H, Zerner MC (1989) J Am Chem Soc 111:7687Google Scholar
  23. 23.
    Böhm MC, Gleiter R (1980) Theor Chim Acta 57:315Google Scholar
  24. 24.
    Böhm MC (1981) Theor Chim Acta 60:233Google Scholar
  25. 25.
    Beletskii IP, Yatsimirskii KB (1985) Teor i Eksp Khimia 21:1 (in Russian)Google Scholar
  26. 26.
    Kon'kov KA, Zhidomirov GM, Khelskov VI, Kopranenkov VN, Ivanov YuV (1989) ibidi 25:471 (in Russian)Google Scholar
  27. 27.
    Bacon AD, Zerner MC (1979) Theor Chim Acta 53:21Google Scholar
  28. 28.
    Zülike L (1973) Quantenchemie. Verlag der Wissenschaften, BerlinGoogle Scholar
  29. 29.
    Clack DW, Hush NS, Yandle SR (1972) J Chem Phys 57:3503Google Scholar
  30. 30.
    Harrison WA (1990) Electronic structure and the properties of solids. Freeman, San FranciscoGoogle Scholar
  31. 31.
    Tchougreeff AL, Misurkin IA (1989) Chem Phys 133:77Google Scholar
  32. 32.
    Löwdin PO (1966) in: Wilcox CH (ed) Perturbation theory and its application in quantum mechanics. Wiley, NY, p 255Google Scholar
  33. 33.
    McWeeny R, Sutcliffe BT (1969) Methods of molecular quantum mechanics. Academic Press, LondonGoogle Scholar
  34. 34.
    Hubbard J, Rimmer DE, Hopgood FRA (1966) Proc Phys Soc 88:13Google Scholar
  35. 35.
    Bogolyubov NN (1970) Selected papers, vol 2, Naukova Dumka, Kiev (in Russian)Google Scholar
  36. 36.
    Parr RG, Ellison FO, Lykos PG (1956) J Chem Phys 24:1106Google Scholar
  37. 37.
    Pople JA, Beveridge DL (1970) Approximate molecular orbital theory. McGraw-Hill, NYGoogle Scholar
  38. 38.
    Slater JC (1960) Quantum theory of atomic structure, Vol 1. McGraw-Hill, NYGoogle Scholar
  39. 39.
    Di Sipio L, Tondello E, De Michelis G, Oleari L (1971) Chem Phys Lett 11:287Google Scholar
  40. 40.
    Soudackov AV (1991) PhD Thesis, Karpov Phys Chem Institute, Moscow, USSR (in Russian)Google Scholar
  41. 41.
    Böhm M, Gleiter R (1981) Theor Chim Acta 59:127Google Scholar
  42. 42.
    Serafini A, Savariault JM, Cassoux P, Labarre JF (1975) Theor Chim Acta 36:241Google Scholar
  43. 43.
    Serafini A, Pelissier M, Savariault JM, Cassoux P, Labarre JF (1975) Theor Chim Acta 39:229Google Scholar
  44. 44.
    Hilal R (1985) Int J Quantum Chem 28:877Google Scholar
  45. 45.
    Moore CE (1952) Atomic energy levels. Circular of the National Bureau of Standards 467, Vol 2Google Scholar
  46. 46.
    Bingham RC, Dewar MJS, Low DH (1975) J Am Chem Soc 97:1285Google Scholar
  47. 47.
    Barraclough CG, Cockman RW, O'Donnell TA, Snare MJ (1988) Inorg Chem 27:4504Google Scholar
  48. 48.
    Ferguson J, Wood DL, Knox K (1963) J Chem Phys 39:881Google Scholar
  49. 49.
    Cotton FA, Goodgame DML, Goodgame M (1961) J Am Chem Soc 83:4690Google Scholar
  50. 50.
    Moscowitz JW, Hollister C, Hornback CJ (1970) J Chem Phys 53:2570Google Scholar
  51. 51.
    Hillier IH, Kendrick J, Mabbs FE, Garner CD (1976) J Am Chem Soc 98:395Google Scholar
  52. 52.
    Allen GC, Clack DW (1970) J Chem Soc A:2668Google Scholar
  53. 53.
    Sutton LE (ed) (1958) Tables of interatomic distances and configurations in molecules and ions. Chemical Society, LondonGoogle Scholar
  54. 54.
    Johansen H, Andersen NK (1986) Mol Phys 58:965Google Scholar
  55. 55.
    Shashkin SY, Goddard WA III (1986) Phys Rev B 33:1353Google Scholar
  56. 56.
    Ng B, Newman DJ (1985) J Chem Phys 83:1758Google Scholar
  57. 57.
    Ng B, Newman DJ (1987) J Chem Phys 87:7096Google Scholar
  58. 58.
    Ng B, Newman DJ (1986) Chem Phys Lett 130:410Google Scholar
  59. 59.
    Janssen GJM, Nieuwpoort WC (1988) Int J Quantum Chem Symp 22:679Google Scholar
  60. 60.
    Ohanessian G, Goddard WA III (1990) Acc Chem Res 23:386Google Scholar
  61. 61.
    Schäffer CE, Jorgensen CK (1965) Mol Phys 9:401Google Scholar
  62. 62.
    Schäffer CE (1968) Struct and Bond 5:68Google Scholar
  63. 63.
    Schäffer CE (1970) Pure and Appl Chem 24:361Google Scholar
  64. 64.
    Woolley RG (1981) Mol Phys 42:703Google Scholar
  65. 65.
    Gerloch M, Woolley RG (1984) Progr Inorg Chem 31:371Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • A. V. Soudackov
    • 1
  • A. L. Tchougreeff
    • 1
  • I. A. Misurkin
    • 1
  1. 1.Karpov Institute of Physical ChemistryMoscowRussia

Personalised recommendations