Journal of Applied Electrochemistry

, Volume 12, Issue 1, pp 41–51 | Cite as

Chemically regenerative redox fuel cells

  • D. -G. Oei


Exploratory experiments with three types of redox fuel cells utilizing the VO 2 + /VO2+-Sn2+/Sn4+, VO 2 + /VO2+-Fe2+/Fe3+ and VO 2 + /VO2+-Cu/Cu2+ redox couples are reported. The results show the major features and problems, and suggest possible solutions to some of the problems associated with operating redox fuel cells. In this phase of experimentation the best individual cell performances that were achieved showed that the VO 2 + /VO2+-Sn2+/Sn2+ redox cell had a power density of 0.049 W cm−2, the VO 2 + /VO2+-Fe2+/Fe3+ redox cell had a power density equal to 0.049 W cm−2 and the V 2 + /VO2+-Cu/Cu2+ redox fuel cell had a power density of 0.093 W cm−2.


Physical Chemistry Fuel Cell Power Density Individual Cell Cell Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. Vielstich, ‘Brennstoffelemente’, Verlag Chemie, Weinheim, West Germany (1965).Google Scholar
  2. [2]
    K. R. Williams (editor), ‘An Introduction to Fuel Cells’, Elsevier, Amsterdam (1966).Google Scholar
  3. [3]
    E. W. Justi and A. W. Winsel, ‘Kalte Verbrennung’ (‘Fuel Cells’), Franz Stein Verlag, Wiesbaden, West Germany (1962).Google Scholar
  4. [4]
    J. M. Matsen, in ‘Regenerative EMF Cells’, (edited by R. F. Gould)Advanced Chemistry Series, Vol. 64, American Chemical Society, Washington, DC (1967).Google Scholar
  5. [5]
    A. M. Posner,Fuels 24 (1955) 330.Google Scholar
  6. [6]
    W. M. Carson and M. L. Feldman,Proc. 13th Annual Power Sources Conf., Fort Monmouth, New Jersey (1959).Google Scholar
  7. [7]
    K. Post, PhD Dissertation, University of New South Wales, Kensington, Australia (1976).Google Scholar
  8. [8]
    M. Kranz, ‘Oxidation of VOSO4 in the Presence of Small Amounts of Other Materials’, CA 55, 5216 f (1961).Google Scholar
  9. [9]
    R. O. Miller, ‘Electrochemical Behavior of 0.2 to 3 Ferrous Chloride-Ferric Chloride Mixtures on Edge-on Pyrolytic Graphite Rotated Disk Electrode’, ERDA/NASA-5022/77/2, NASA Report TM-73716 (1977).Google Scholar
  10. [10]
    D. Horvitz, ‘Stannic Halide Solution Reduction with H2’, US Patent 3053 621, CA 161341 (1962).Google Scholar
  11. [11]
    J. Benard and P. Albert,Compt. Rend. Acad. Sci, Paris 224 (1947) 45.Google Scholar
  12. [12]
    B. Meddings and V. N. Mackiw, in ‘Unit Processes in Hydrometallurgy’ (edited by M. E. Wadsworth and F. T. Davis) Gordon and Breach, New York (1965).Google Scholar
  13. [13]
    E. Peters and E. A. von Hahn, in ‘Unit Processes in Hydrometallurgy’ (edited by M. E. Wadsworth and F. T. Davis) Gordon and Breach, New York (1965) p. 204.Google Scholar
  14. [14]
    E. A. von Hahn and E. Peters,J. Phys. Chem. 69 (1965) 547.Google Scholar
  15. [15]
    J. Giner, ‘Screening of Redox Couples and Electrode Materials’, NASA Report CR-134 705 (1976).Google Scholar
  16. [16]
    A. P. Bond and D. Singman, ‘Electrode Kinetics of Oxidation-Reduction Couples’, DOFL Report No. TR-835, PB-146398 (1960).Google Scholar
  17. [17]
    T. Erdey-Gruz, ‘Kinetics of Electrode Processes’, Wiley-Interscience, New York (1972) p. 320.Google Scholar
  18. [18]
    R. S. Yeo, J. McBreen, A. A. C. Tseung and S. Srinivasan,J. Appl. Electrochem. 10 (1980) 393.Google Scholar
  19. [19]
    L. H. Thaller, ‘Redox Flow Cell Energy Storage Systems’, NASA TM-79143, DOE/NASA/1002-79/3 (1979).Google Scholar

Copyright information

© Chapman and Hall Ltd. 1982

Authors and Affiliations

  • D. -G. Oei
    • 1
  1. 1.Engineering and Research StaffFord Motor CompanyDearbornUSA

Personalised recommendations