Skip to main content
Log in

Harmonic interpolation in Fejér points with the Faber polynomials as a basis

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Curtiss, J. H.: Interpolation in regularly distributed points. Trans. Amer. Math. Soc.38, 458–473 (1935).

    Google Scholar 

  2. — Riemann sums and the fundamental polynomials of Lagrange interpolation. Duke Math. J.8, 525–532 (1941).

    Google Scholar 

  3. — Solution of the Dirichlet problem by interpolating harmonic polynomials. Bull. Amer. Math. Soc.68, 333–337 (1962).

    Google Scholar 

  4. — Interpolation by harmonic polynomials. J. Soc. Ind. Appl. Math.10, 709–736 (1962).

    Google Scholar 

  5. Curtiss, J. H. Convergence of complex Lagrange polynomials on the locus of the interpolation points. Duke Math. J.32 (1965).

  6. Faber, G.: Über polynomische Entwicklungen. Math. Ann.57, 398–408 (1903).

    Google Scholar 

  7. — Über Tchebyscheffsche Polynome. J. reine u. angew. Math.150, 79–106 (1920).

    Google Scholar 

  8. Fejér, L.: Interpolation und konforme Abbildung. Göttinger Nachrichten1918, 319–331.

  9. Pommerenke, Ch.: Über einige Klassen meromorpher schlichter Funktionen. Math. Z.78, 263–284 (1962).

    Google Scholar 

  10. Price, G. B.: Bounds for determinants with dominant principal diagonal. Proc. Amer. Math. Soc.2, 497–502 (1951).

    Google Scholar 

  11. Riesz, F., andB. Sz.-Nagy: Functional Analysis. New York: Frederick Ungar Publishing Co. 1955.

    Google Scholar 

  12. Robertson, M. S.: Convolutions of schlicht functions. Proc. Amer. Math. Soc.13, 585–589 (1962).

    Google Scholar 

  13. Runge, C. D. T.: Theorie und Praxis der Reihen. Leipzig 1904.

  14. Sobczyk, A.: A property of algebraic homogeneity for linear functionspaces. Amer. Math. Monthly72, No. 1 (1965).

    Google Scholar 

  15. Sobczyk, A. Rank-sets and rank-spaces in linear function-spaces. Amer. Math. Monthly72, No. 1 (1965).

    Google Scholar 

  16. — On the Curtiss non-singularity condition in harmonic polynomial interpolation. J. soc. Ind. Appl. Math.12, 499–514 (1964).

    Google Scholar 

  17. Szegö, G.: Orthogonal Polynomials. Amer. Math. Soc. 1939.

  18. Taussky, O.: A recurring theorem on determinants. Amer. Math. Monthly56, 672–676 (1949).

    Google Scholar 

  19. Walsh, J. L.: The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions. Bull. Amer. Math. Soc.35, 499–544 (1929).

    Google Scholar 

  20. — On interpolation to harmonic functions by harmonic polynomials. Proc. Nat. Acad. Sci. U.S.A.18, 514–517 (1932).

    Google Scholar 

  21. -Walsh, J. L. Interpolation and Approximation by Rational Functions in the Complex Domain. Second Ed. Amer. Math. Soc. 1956.

  22. — Solution of the Dirichlet problem for the ellipse by interpolating harmonic polynominals. J. Math. and Mech.9, 193–196 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To the memory ofLeopold Fejér.

This work was supported by the U.S. Air Force through the Air Force Office of Scientific Research under grants AF-AFOSR 62-189 and 358–63.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curtiss, J.H. Harmonic interpolation in Fejér points with the Faber polynomials as a basis. Math Z 86, 75–92 (1964). https://doi.org/10.1007/BF01111280

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01111280

Keywords

Navigation