Skip to main content

Galerkins Lösungsnäherungen bei monotonen Abbildungen

This is a preview of subscription content, access via your institution.

Literatur

  1. Amann, H.: Zum Galerkin-Verfahren für die Hammersteinsche Gleichung. Arch. Rat. Mech. Analysis35, 114–121 (1969).

    Google Scholar 

  2. Amann, H.: Über die Konvergenzgeschwindigkeit des Galerkin-Verfahrens für die Hammersteinsche Gleichung. Arch. Rat. Mech. Analysis37, 33–47 (1970).

    Google Scholar 

  3. Asplund, E.: Averaged norms. Israel J. Math.5, 227–233 (1967).

    Google Scholar 

  4. Browder, F. E.: Existence and uniqueness theorems for solutions of nonlinear boundary value problems. Proc. Symp. Appl. Math., Vol.17, Amer. Math. Soc., Providence, R. I., 24–49, 1965.

    Google Scholar 

  5. Browder, F. E.: Multivalued monotone nonlinear mappings and duality mappings in Banach spaces. Trans. Amer. Math. Soc.118, 338–351 (1965).

    Google Scholar 

  6. Browder, F. E.: Nonlinear maximal monotone operators in Banach space. Math. Ann.175, 89–113 (1968).

    Google Scholar 

  7. Busch, W.: Humoristischer Hausschatz. 26. Aufl. Stuttgart: Bassermann-Verlag, 1964.

    Google Scholar 

  8. Euklid: Elemente. Alexandria, 300 v. Chr.

  9. Minty, G. J.: Monotone (non-linear) operators in Hilbert space. Duke Math. J.29, 341–346 (1962).

    Google Scholar 

  10. Rockafellar, R. T.: Local boundedness of nonlinear, monotone operators. Michigan Math. J.16, 397–407 (1969).

    Google Scholar 

  11. Rockafellar, R. T.: On the maximality of sums of nonlinear monotone operators. Trans. Amer. Math. Soc.149, 75–88 (1970).

    Google Scholar 

  12. Wille, F.: Monotone Operatoren mit Störungen. Erscheint in Arch. Rat. Mech. Analysis 45–47 (1972).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wille, F. Galerkins Lösungsnäherungen bei monotonen Abbildungen. Math Z 127, 10–16 (1972). https://doi.org/10.1007/BF01110100

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01110100