Skip to main content
Log in

Electronic and geometric structure of the complex FeN2

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Abstract

The extended Hückel method has been used to calculate the electronic structure of “linear” and “perpendicular” complexes of the Fe atom with the N2 molecule. The linear complex is found to be more stable, in agreement with the small amount of available experimental data. Its stabilization is due to the combined action of two effects-promotion of electrons in the σ-core of the complex in the direction of the Fe atom, and promotion in the π-cloud in the opposite direction. In the perpendicular complex, the last effect is almost absent because of t the antibonding nature of the π-bonds, and this explains its lower stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. K. Syrkin, ZhSkh,1, 189, 1960.

    Google Scholar 

  2. L. E. Orgel, An Introduction to Transition Metal Chemistry, Ligand Field Theory, Methuen, London, §9, 3, 1960; L. Orgel, An Introduction to Transition Metal Chemistry, Ligand Field Theory [Russian translation], Mir, Moscow, §9, 3, 1964.

    Google Scholar 

  3. F. Bottomley and S. C. Nyburg, Chem. Commun., 897, 1966.

  4. A. D. Allen, F. Bottomley, R. O. Harris, V. P. Reinsaln, and C. V. Senoff, J. Amer. Chem. Soc.,89, 5595, 1967.

    Google Scholar 

  5. J. P. Collman and J. W. Kang, J. Amer. Chem. Soc.,88, 3459, 1966.

    Google Scholar 

  6. J. P. Collman, M. Kubota, J. Y. Sun, and F. Vastine, J. Amer. Chem. Soc.,89, 169, 1967.

    Google Scholar 

  7. A. Yamamoto, S. Kitazume, L. S. Pu, and S. Ikeda, Chem. Commun., 79, 1967.

  8. M. Wolfsberg and L. Helmholz, J. Chem. Phys.,20, 837, 1952.

    Google Scholar 

  9. R. Hoffmann and W. N. Lipscomb, J. Chem. Phys.,36, 2179, 1962.

    Google Scholar 

  10. G. I. Kagan, G. M. Kagan, and I. N. Fundyler, TEKh [Theoretical and Experimental Chemistry],3, 444, 1967.

    Google Scholar 

  11. Yu. A. Kruglyak, G. G. Dyadyusha, V. A. Kuprievich, L. M. Podol'skaya, and G. I. Kagan, Methods for Calculating the Electronic Structure and Spectra of Molecules [in Russian], Naukova Dumka, Kiev, 1969.

    Google Scholar 

  12. E. Clementi, C. C. J. Roothaan, and M. Yoshimine, Phys. Rev.,127, 1618, 1962.

    Google Scholar 

  13. E. Clementi, “Analytical self-consistent field functions, III, isoelectronic series with 19 to 30 electrons,” IBM Research paper RJ-283, 20 January 1964.

  14. L. C. Cusachs, J. Chem. Phys.,43, S157, 1965.

    Google Scholar 

  15. R. S. Mulliken, in: The Threshold of Space, ed. by B. Armstrong and A. Dalgarno, Pergamon Press, NY, p. 169, 1957.

    Google Scholar 

  16. J. Slater, The Electronic Structure of Molecules [Russian translation], Mir, Moscow, p. 140, 1965.

    Google Scholar 

  17. B. J. Ransil, Rev. Mod. Phys.,32, 239, 1960.

    Google Scholar 

  18. R. S. Mulliken, J. Chem. Phys.,23, 1833, 1955.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors thank G. I. Kagan for providing the EH program.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruglyak, Y.A., Yatsimirskii, K.B. Electronic and geometric structure of the complex FeN2 . Theor Exp Chem 5, 197–201 (1969). https://doi.org/10.1007/BF01109662

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01109662

Keywords

Navigation