Skip to main content
Log in

Study of radiation interchange in an enclosure consisting of plane isothermal and adiabatic surfaces

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

This study examines the validity and accuracy of the commonly used diffuse, specular, and diffuse-specular constant property models for predicting radiant interchange among real surfaces by comparing analytical predictions with experimental data. The materials tested were sandblasted stainless steel, electropolished stainless steel, rough electroplated gold, and smooth electroplated gold. Measurements were made over the temperature range from 310.4 ‡K to 644.0 ‡K. The data indicates that the simple diffuse model yields reasonably accurate radiant heat exchange predictions. The variation in the radiative surface characteristics with direction should be accounted for in some manner, particularly for specular or nearly specularly reflecting surfaces.

Zusammenfassung

Die vorliegende Untersuchung beschÄftigt sich mit dem Gültigkeitsbereich und der Genauigkeit der unter der Annahme diffuser, spiegelnder und diffus-spiegelnder OberflÄchen bei konstanten Zustandsgrö\en im allgemeinen benutzten Modelle zur Berechnung des Strahlungsaustausches zwischen technischen OberflÄchen. Analytisch ermittelte Ergebnisse werden mit experimentellen verglichen. Die untersuchten Materialien waren sandgestrahlter Edelstahl, elektropolierter Edelstahl, rauhes elektroplattiertes Gold und glattes elektroplattiertes Gold. Die Messungen wurden im Temperatur-bereich von 310,4 ‡K bis 644,0 ‡K vorgenommen. Die Ergebnisse zeigen, daβ sich der Wärmeaustausch durch Strahlung mit Hilfe des einfachen Modells diffuser Reflektion verhÄltnismÄ\ig genau beschreiben lÄ\t. Der Einflu\ der Richtungs-charakteristiken der strahlenden OberflÄche sollte insbesondere für spiegelnde oder fast spiegelnde reflektierende OberflÄchen mit in Betracht gezogen werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Surface area

E Ai-Aj :

Exchange factor

F Ai-Aj :

Configuration factor

G :

Irradiation (incident radiant energy flux)

G* :

Dimensionless irradiation,G/ε h σT 4h

H :

Plate separation distance, Fig. 1

J :

Radiosity (diffusely leaving radiant energy flux)

L :

Plate width, Fig. 1

q :

Local heat flux

T :

Temperature

x :

Coordinate distance, Fig. 1

y :

Coordinate distance, Fig. 1

z :

Coordinate distance, Fig. 1

α :

Absorptance

γ :

Plate separation to width ratio,H/L

ε :

Emittance

ζ:

⧀mensionless coordinate,z/H

η :

Dimensionless coordinate,y/L

θ′ :

Polar angle of incidence

λ :

Wavelength

λ m :

Wavelength of the mean blackbody radiant energy

λ max :

Wavelength of the maximum blackbody radiant energy

ξ :

Dimensionless coordinate,x/L

ϱ :

Reflectance

ϱ (θ′):

Reflectance of an optically smooth surface predicted from Fresnel's equations

σ :

Stefan Boltzmann constant

σ o :

Optical rms roughness

σm :

Mechanical rms roughness

Φ′ :

Azimuthal angle of incidence

c:

Refers to cold surface

h:

Refers to hot surface

References

  1. Sparrow, E. M., andR. D. Cess: Radiation Heat Transfer. Belmont, Calif.: Brooks/Cole Publishing Company 1966.

    Google Scholar 

  2. Schornhorst, J. R.: An Analytical and Experimental Investigation of Radiant Heat Exchange Between Simply Arranged Surfaces. Ph. D. Thesis, Purdue University, Lafayette, Indiana (1967):

    Google Scholar 

  3. Schornhorst, J. R., andR. Viskanta: Trans. ASME, Series C, J. Heat Transfer 90 (1968) pp. 429/436.

    Google Scholar 

  4. Engstrom, P. M.: An Investigation of Radiant Heat Exchange Between Plane Surfaces. M. S. Thesis, Purdue University, Lafayette, Indiana (1968).

    Google Scholar 

  5. Sparrow, E. M., E. R. G. Eckert andV. K. Jonnson: Trans. ASME, Series C, J. Heat Transfer 84 (1962) pp. 294/300.

    Google Scholar 

  6. Hilderband, F. B.: Methods of Applied Mathematics. Englewood Cliffs, New Jersey: Prentice-Hall 1952.

    Google Scholar 

  7. Wade, W. R., and W. S.Slemp: Measurements of Total Emittance of Several Refractory Oxides, Cements, and Ceramics for Temperatures from 600 ‡R to 2000 ‡R. National Aeronautics and Space Administration, Technical Note D-998 (1961).

  8. Edwards, D. K., andI. Catton: Radiation Characteristics of Rough. Oxidized Metals, in: Advances in Thermophysical Properties at Extreme Temperatures and Pressures, pp. 189/199. New York: ASME 1965.

    Google Scholar 

  9. Love, T. J., and R. E.Francis: Experimental Determination of Reflectance Function for Type 302 Stainless Steel. AIAA Paper No. 67–321 (1967).

  10. Took, J. S.: Radiant Heat Transfer Analysis Among Surfaces Having Direction Dependent Properties by the Monte Carlo Method. M. S. Thesis, Purdue University, Lafayette, Indiana (1967)

    Google Scholar 

  11. Toor, S. J., andR. Viskanta: Intern. J. Heat Mass Transfer 11 (1968) pp. 883/897.

    Google Scholar 

  12. Wiebelt, J. A.: Engineering Radiation Heat Transfer. New York: Holt, Rinehart and Winston Publ. 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engstrom, P.M., Viskanta, R. & Toor, J.S. Study of radiation interchange in an enclosure consisting of plane isothermal and adiabatic surfaces. Warme- und Stoffubertragung 3, 63–69 (1970). https://doi.org/10.1007/BF01108026

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01108026

Keywords

Navigation