Skip to main content
Log in

Equation of steady-state capillary gravitational-gyroscopic waves on shallow water and Kelvin waves

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

On the basis of a spectral asymptotic method developed by the authors, a rigorous derivation is given on the equation of capillary waves on shallow water with consideration of the rotation of the fluid and its stratification. The character of the wave motions described by this equation is investigated, and the existence of capillary Kelvin waves is established. Moreover, the problem of the diffraction of these waves by a half plane is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. N. G. Askerov, S. G. Krein, and G. I. Laptev, “On a class of non-self-adjoint boundary value problems,” Dokl. AN SSSR,155, No. 3, 499–502 (1964).

    Google Scholar 

  2. V. G. Babskii, N. D. Kopachevskii, A. D. Myshkis, L. A. Slobzhanin, and A. D. Tyuptsov, The Hydrodynamics of Weightlessness [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  3. H. Bateman and A. Erdelyi, Tables of Integral Transformations [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  4. H. Bateman and A. Erdelyi, Higher Transcendental Functions [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  5. L. M. Brekhovskikh and V. V. Goncharov, Introduction to the Mechanics of Continuous Media [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  6. P. N. Vabishchevich, S. A. Gabov, and P. V. Shevtsov, “The angular potential for the operator Δ+c(x),” Zh. Vychisl. Mat. Mat. Fiz.,19, No. 5, 1162–1177 (1979).

    Google Scholar 

  7. M. M. Vainberg and V. A. Trenogin, The Theory of Bifurcation of Nonlinear Equations [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  8. G. N. Watson, The Theory of Bessel Functions [Russian translation], Part I, IL, Moscow (1949).

    Google Scholar 

  9. N. Wiener and R. Paley, The Fourier Transform in the Complex Domain [in Russian], Nauka, Moscow (1964).

    Google Scholar 

  10. V. S. Vladimirov, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  11. S. A. Gabov, “The angular potential and some of its applications,” Mat. Sb.,103, No. 4, 490–504 (1977).

    Google Scholar 

  12. S. A. Gabov, “The diffraction of a Kelvin wave by a semiinfinite wall in an unbounded basin,” Vestn. Mosk. Univ., Ser. Mat.-Mekh., No. 5, 100–107 (1973).

    Google Scholar 

  13. S. A. Gabov, “The diffraction of a Kelvin wave by a semiinfinite wall,” Dokl. AN SSSR,217, No. 2, 299–303 (1974).

    Google Scholar 

  14. S. A. Gabov and P. I. Ruban, “On Kelvin waves in basins with bottom shelves,” Vestn. Mosk. Univ., Ser. Mat.-Mekh., No. 4, 120–125 (1974).

    Google Scholar 

  15. S. A. Gabov and A. G. Sveshnikov, “Applications of the angular potential: on the solution of the problem of the diffraction of tidal waves,” Differents. Uravn.,15, No. 7, 1271–1278 (1979).

    Google Scholar 

  16. S. A. Gabov and A. G. Sveshnikov, “The long-wave asymptotics of the Green function of the problem of waves on the surface of a stratified fluid,” Zh. Vychisl. Mat. Mat. Fiz.,20, No. 6, 1564–1579 (1980).

    Google Scholar 

  17. S. A. Gabov, A. G. Sveshnikov, and A. K. Shatov, “On the asymptotics of the solution of the problem of diffraction of long waves on the surface of a stratified fluid,” Differents. Uravn.,17, No. 10, 1817–1825 (1981).

    Google Scholar 

  18. S. A. Gabov, A. G. Sveshnikov, and A. K. Shatov, “On the theory of steady-state waves on the surface of a spherical layer of stratified fluid,” Dokl. AN SSSR,256, No. 2, 343–346 (1981).

    Google Scholar 

  19. S. A. Gabov, A. G. Sveshnikov, and A. K. Shatov, “The asymptotics of the solution of the problem on waves on a surface of a thin spherical layer of stratified fluid in the presence of obstacles,” Dokl. AN SSSR,260, No. 3, 579–583 (1981).

    Google Scholar 

  20. F. D. Gakhov, Boundary Value Problems, Pergamon (1960).

  21. I. M. Gel'fand and G. E. Shilov, Generalized Functions and Operations on Them [in Russian], Vol. 1, Gos. Izd. Fiz.-Mat. Lit., Moscow (1958).

    Google Scholar 

  22. H. Deutsch, A Handbook on the Practical Application of the Laplace Transform and the Z-Transform [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  23. R. Kastro, “The asymptotics of the solution of the problem of waves on the surface of an inhomogeneous, stratified fluid,” Zh. Vychisl. Mat. Mat. Fiz.,22, No. 4, 891–902 (1982).

    Google Scholar 

  24. E. T. Copson, Asymptotic Expansions [Russian translation], Mir, Moscow (1966).

    Google Scholar 

  25. M. A. Lavrent'ev and B. V. Shabat, Methods of the Theory of Functions of a Complex Variable [in Russian], Fizmatgiz, Moscow (1958).

    Google Scholar 

  26. G. Lamb, Hydrodynamics [Russian translation], Gostekhizdat, Moscow-Leningrad (1947).

    Google Scholar 

  27. Yu. Z. Miropol'skii, The Dynamics of Internal Gravitational Waves in the Ocean [in Russian], Gidrometeoizdat, Leningrad (1981).

    Google Scholar 

  28. R. Mittra and S. Li, Analytic Methods of the Theory of Waveguides [Russian translation], Mir, Moscow (1974).

    Google Scholar 

  29. N. N. Moiseev, “Some questions of the hydrodynamics of surface waves,” in: Mechanics in the USSR after 50 Years [in Russian], Vol. 2, Nauka, Moscow (1970), pp. 55–78.

    Google Scholar 

  30. N. N. Moiseev and V. V. Rumyantsev, “The Dynamics of a Body with Cavities Containing a Fluid [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  31. N. N. Moiseev and F. L. Chernous'ko, “Problems of the oscillations of a fluid subject to forces of surface tension,” Zh. Vychisl. Mat. Mat. Fiz.,5, No. 6, 1071–1095 (1965).

    Google Scholar 

  32. P. M. Morse and G. Feshbach, Methods of Theoretical Physics [Russian translation], Vols. 1, 2, IL, Moscow (1958).

    Google Scholar 

  33. M. A. Naimark, Linear Differential Operators [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  34. B. Noble, The Wiener-Hopf Method [Russian translation], IL, Moscow (1962).

    Google Scholar 

  35. F. Olver, Introduction to Asymptotic Methods and Special Functions [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  36. V. V. Rumyantsev, “On the stability of the motion of a solid body with a fluid possessing surface tension,” Prikl. Mat. Mekh.,28, No. 4, 746–753 (1964).

    Google Scholar 

  37. A. G. Sveshnikov, “The principle of radiation,” Dokl. AN SSSR,73, No. 3, 917–920 (1950).

    Google Scholar 

  38. A. G. Sveshnikov, “The principle of limiting absorption for the metaharmonic equation,” Dokl. AN SSSR,86, No. 2, 231–234 (1952).

    Google Scholar 

  39. Ya. I. Serkerzh-Zen'kovich, “On the nonlinear theory of steady-state capillary-gravitational waves caused by a pressure periodic along the surface of a fluid over a wavey bottom,” in: The Theory of Diffraction and Propagation of Waves, VI Ail-Union Symposium on the Diffraction and Propagation of Waves, Book 2, Moscow-Erevan (1973), pp. 163–168.

  40. L. N. Sretenskii, The Theory of Wave Motions of a Fluid, Glav. Red. Obshchetekhn. Liter, i Monograf, Moscow-Leningrad (1936).

  41. J. J. Stoker, Waves on Water [Russian translation], IL, Moscow (1959).

    Google Scholar 

  42. E. C. Titshmarsh, Introduction to the Theory of Fourier Integrals [in Russian], Gostekhizdat, Moscow-Leningrad (1948).

    Google Scholar 

  43. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  44. G. Whitham, Linear and Nonlinear Waves [Russian translation], Mir, Moscow (1977).

    Google Scholar 

  45. M. V. Fedoryuk, The Method of Descent [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  46. H. Hönl, A. Maue, and K. Westphal, The Theory of Diffraction [Russian translation], Mir, Moscow (1964).

    Google Scholar 

  47. G. E. Shilov, Mathematical Analysis. A Second Special Course [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  48. T. B. Benjamin, “Theoretical problems posed by gravity-capillary waves with edge constraints,” in: Trends in Appl. Pure Math. Mech., Vol. 3 (1981).

  49. T. B. Benjamin and J. C. Scott, “Gravity capillary waves with edge constraints,” J. Fluid Mech.,92, 241–267 (1970).

    Google Scholar 

  50. J. Graham-Eagle, “A new method for calculating eigenvalues with applications to gravitycapillary waves with edge constraints,” Math. Proc. Cambridge Philos. Soc.,94, No. 3, 553–564 (1983).

    Google Scholar 

Download references

Authors

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Matematicheskii Analiz, Vol. 24, pp. 207–268, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabov, S.A., Sveshnikov, A.G. Equation of steady-state capillary gravitational-gyroscopic waves on shallow water and Kelvin waves. J Math Sci 42, 2138–2177 (1988). https://doi.org/10.1007/BF01106940

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01106940

Keywords

Navigation