Skip to main content
Log in

Duality of algebras with an involution and generalized shift operators

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

A survey is given of works in which L. S. Pontryagin's duality principle is extended to various classes of, generally speaking, noncommutative, generalized shift operators. The discussion is carried out with the use of the theory of Kac algebras and its generalizations. A number of problems are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Yu. M. Berezanskii, “On the center of the group ring of a compact group,” Dokl. AN SSSR,72, No. 5, 825–828 (1950).

    Google Scholar 

  2. Yu. M. Berezanskii, “On the theory of almost periodic sequences of B. M. Levitan,” Dokl. AN SSSR,81, No. 4, 493–496 (1951).

    Google Scholar 

  3. Yu. M. Berezanskii, “Hypercomplex systems with a discrete basis,” Dokl. AN SSSR,81, No. 3, 329–332 (1951).

    Google Scholar 

  4. Yu. M. Berezanskii, “On some normed rings constructed on the basis of orthogonal polynomials,” Ukr. Mat. Zh.,3, No. 4, 412–432 (1951).

    Google Scholar 

  5. Yu. M. Berezanskii, “On hypercomplex systems constructed on the basis of the Sturm — Liouville problem on the semiaxis,” Dokl. AN SSSR,91, No. 6, 1245–1248 (1953).

    Google Scholar 

  6. Yu. M. Berezanskii, Eigenfunction Expansions for Self-Adjoint Operators [in Russian], Naukova Dumka, Kiev (1965).

    Google Scholar 

  7. Yu. M. Berezanskii and A. A. Kalyuzhnii, “Hypercomplex systems with a locally compact basis,” Preprint, Inst. Mat. AN UkrSSR, No. 40 (1983).

  8. Yu. M. Berezanskii and A. A. Kalyuzhnii, “Nuclear spaces of functions on the basis of a hypercomplex system,” Ukr. Mat. Zh.,35, No. 1, 9–17 (1983).

    Google Scholar 

  9. Yu. M. Berezanskii and A. A. Kalyuzhnii, “Representations of hypercomplex systems with a locally compact basis,” Ukr. Mat. Zh.,36, No. 4, 417–421 (1984).

    Google Scholar 

  10. Yu. M. Berezanskii and A. A. Kalyuzhnii, “Spectral decompositions of representations of hypercomplex systems,” in: Spectral Theory of Operators and Infinite-Dimensional Analysis [in Russian], Kiev (1984), pp. 4–19.

  11. Yu. M. Berezanskii and A. A. Kalyuzhnii, “On hypercomplex systems constructed on the basis of orthogonal polynomials,” Ukr. Mat. Zh.,38, No. 3, 275–284 (1986).

    Google Scholar 

  12. Yu. M. Berezanskii and S. G. Krein, “Continuous algebras,” Dokl. AN SSSR,72, No. 1, 5–8 (1950).

    Google Scholar 

  13. Yu. M. Berezanskii and S. G. Krein, “Some classes of continuum algebras,” Dokl. AN SSSR,72, No. 2, 237–240 (1950).

    Google Scholar 

  14. Yu. M. Berezanskii and S. G. Krein, “Hypercomplex systems with a compact basis,” Ukr. Mat. Zh.,3, No. 2, 184–204 (1951).

    Google Scholar 

  15. Yu. M. Berezanskii and S. G. Krein, “Hypercomplex systems with a continuum basis,” Usp. Mat. Nauk,12, No. 1, 147–152 (1957).

    Google Scholar 

  16. F. A. Berezin and I. M. Gel'fand, “Some remarks on the theory of spherical functions on symmetric Riemannian manifolds,” Tr. Mosk. Mat. Obshch.,5, 311–351 (1956).

    Google Scholar 

  17. N. Bourbaki, Elements of Mathematics, Book 5, Topological Vector Spaces [Russian translation], IL, Moscow (1959).

    Google Scholar 

  18. N. Bourbaki, Integration. Measures on Locally Compact Spaces [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  19. L. I. Vainerman, “Characterization of objects dual to locally compact groups,” Funkts. Anal. Prilozhen.,8, No. 1, 75–76 (1974).

    Google Scholar 

  20. L. I. Vainerman, “Finite hypercomplex Kac systems,” Funkts. Anal. Prilozhen.,17, No. 26, 68–69 (1983).

    Google Scholar 

  21. L. I. Vainerman, “Hypercomplex systems with a compact basis,” 17 Voronezh Winter Mathematics School. Voronezh, Jan. 27-Feb. 2, Part 1, Voronezh Univ., Voronezh, 1984, pp. 48–50.

    Google Scholar 

  22. L. I. Vainerman, “Hypercomplex systems with a compact and discrete basis,” Dokl. AN SSSR,278, No. 1, 16–20 (1984).

    Google Scholar 

  23. L. I. Vainerman, “Harmonic analysis on hypercomplex systems with a compact and discrete basis,” in: Spectral Theory of Operators and Infinite-Dimensional Analysis [in Russian], Kiev (1984), pp. 19–32.

  24. L. I. Vainerman, “The duality principle for finite, hypercomplex systems,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 2, 12–21 (1985).

    Google Scholar 

  25. L. I. Vainerman and G. L. Litvinov, “The Plancherel formula and the inversion formula for generalized shift operators,” Dokl. AN SSSR,251, No. 4, 792–795 (1981).

    Google Scholar 

  26. L. I. Vainerman and G. I. Kac, “Nonunimodular ring groups and Hopf-von Neumann algebras,” Dokl. AN SSSR,211, No. 5, 1031–1034 (1973); Mat. Sb.,94, No. 2, 194–225 (1974).

    Google Scholar 

  27. A. Weil, Integration in Topological Groups and Its Application [Russian translation], IL, Moscow (1950).

    Google Scholar 

  28. A. M. Vershik, “The geometric theory of states, the von Neumann boundary, and duality of C*-algebras,” J. Sov. Math.,3, No. 6 (1975).

  29. I. M. Gel'fand, “Spherical functions on symmetric Riemannian spaces,” Dokl. AN SSSR,70, No. 1, 5–8 (1950).

    Google Scholar 

  30. R. Ya. Grabovskaya, V. I. Kononenko, and V. B. Osipov, “On a family of generalized shift operators,” Izv. AN SSSR, Ser. Mat.,41, No. 4, 912–936 (1977).

    Google Scholar 

  31. D. I. Gurevich, “Generalized shift operators with a right infinitesimal Sturm-Liouville operator,” Mat. Zametki,25, No. 3, 393–408 (1979).

    Google Scholar 

  32. D. I. Gurevich, “Generalized shift operators on Lie groups,” Izv. AN ArmSSR,18, No. 4, 305–317 (1983).

    Google Scholar 

  33. J. Dixmier, C*-Algebras and Their Representations [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  34. V. G. Drinfel'd, “Hamiltonian structures on Lie groups, Lie bialgebras, and the geometric meaning of the Yang-Baxter equation,” Dokl. AN SSSR,268, No. 2, 285–287 (1983).

    Google Scholar 

  35. V. G. Drinfel'd, “Hopf algebras and the quantum Yang-Baxter equation,” Dokl. AN SSSR,283, No. 5, 1060–1064 (1985).

    Google Scholar 

  36. D. P. Zhelobenko and A. I. Shtern, Representations of Lie Groups [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  37. A. A. Kalyuzhnii, “A theorem on the existence of a multiplicative measure,” Ukr. Mat. Zh.,35, No. 3, 369–371 (1983).

    Google Scholar 

  38. M. V. Karasev, Operators of the regular representation for a class of non-Lie commutation relations,” Funkts. Anal. Prilozhen.,13, No. 3, 89–90 (1979).

    Google Scholar 

  39. M. V. Karasev and V. P. Maslov, “Algebras with general commutation relations and their applications. II. Operators unitary-nonlinear equations,” J. Sov. Math.,15, No. 3 (1981).

  40. G. I. Kac, “A generalization of the group duality principle,” Dokl. AN SSSR,138, No. 2, 275–278 (1961).

    Google Scholar 

  41. G. I. Kac, “Representations of compact ring groups,” Dokl. AN SSSR,145, No. 5, 989–992 (1962).

    Google Scholar 

  42. G. I. Kac, “Finite ring groups,” Dokl. AN SSSR,147 No. 1, 21–24 (1962).

    Google Scholar 

  43. G. I. Kac, “Compact and discrete ring groups,” Ukr. Mat. Zh.,14, No. 3, 260–270 (1962).

    Google Scholar 

  44. G. I. Kac, “Ring groups and the duality principle. I,” Tr. Mosk. Mat. Obshch.,12, 259–301 (1963); II, Tr. Mosk. Mat. Obshch.,13, 84–113 (1965).

    Google Scholar 

  45. G. I. Kac, “Generalized functions on a locally compact group and decompositions of unitary representations,” Tr. Mosk. Mat. Obshch.,10, 3–40 (1961).

    Google Scholar 

  46. G. I. Kac, “Extensions of groups which are ring groups,” Mat. Sb.,76, No. 3, 473–496 (1968).

    Google Scholar 

  47. G. I. Kac, “Some arithmetic properties of ring groups,” Funks. Anal. Prilozhen.,6, No. 2, 88–90 (1972).

    Google Scholar 

  48. G. I. Kac and V. G. Palyutkin, “An example of a ring group generated by Lie groups,” Ukr. Mat. Zh.,16, No. 1, 99–105 (1964).

    Google Scholar 

  49. G. I. Kac and V. G. Palyutkin, “Finite ring groups,” Tr. Mosk. Mat. Obshch.,15, 244–261 (1966).

    Google Scholar 

  50. G. I. Kac and V. G. Palyutkin, “An example of a ring group of eighth, order,” Usp. Mat. Nauk,20, No. 5, 268–269 (1965).

    Google Scholar 

  51. S. V. Kerov, “Dual algebras of functions on a finite group,” J. Sov. Math.,8, No. 1 (1977).

  52. S. V. Kerov, “Duality of finite-dimensional *-algebras,” Vestn. Leningr. Univ., No. 7, 23–29 (1974).

    Google Scholar 

  53. A. A. Kirillov, “On the Plancherel measure for nilpotent Lie groups,” Funkts. Anal. Prilozhen.,1, No. 4, 84–85 (1967).

    Google Scholar 

  54. A. A. Kirillov, Elements of the Theory of Representations [in Russian], Nauka, Moscow(1978).

    Google Scholar 

  55. F. Combes, “Weights and conditional expectations on von Neumann algebras,” Matematika, a Periodical Collection of Translations of Foreign Articles,18, No. 6, 80–113 (1974).

    Google Scholar 

  56. M. G. Krein, “On positive functionals on almost periodic functions,” Dokl. AN SSSR,30, No. 1, 9–12 (1941).

    Google Scholar 

  57. M. G. Krein, “A duality principle for a bicompact group and a quadratic block-algebra,” Dokl. AN SSSR,69, No. 6, 725–728 (1949).

    Google Scholar 

  58. M. G. Krein, “Hermitian-positive kernels on homogeneous spaces. I,” Ukr. Mat. Zh.,1, No. 4, 64–98 (1949); II, Ukr. Mat. Zh.,2, No. 1, 10–59 (1950).

    Google Scholar 

  59. M. G. Krein, “On a general method of decomposing positive definite kernels into elementary products,” Dokl. AN SSSR,53, No. 1, 3–6 (1946).

    Google Scholar 

  60. B. M. Levitan, “Normed rings generated by a generalized shift operator,” Dokl. AN SSSR,47, No. 1, 3–6 (1945).

    Google Scholar 

  61. B. M. Levitan, “Theorems on the representation of positive definite functions for a generalized shift operator,” Dokl. AN SSSR,47 No. 3, 163–165 (1945).

    Google Scholar 

  62. B. M. Levitan, “The Plancherel theorem for a generalized shift operation,” Dokl. AN SSSR,47, No. 5, 323–326 (1945).

    Google Scholar 

  63. B. M. Levitan, “A duality law for a generalized shift operation,” Dokl. AN SSSR,4, No. 6, 401–403 (1945).

    Google Scholar 

  64. B. M. Levitan, “Application of generalized shift operators to linear differential operators of second order,” Usp. Mat. Nauk,4, No. 1, 3–112 (1949).

    Google Scholar 

  65. B. M. Levitan, “Lie theorems for generalized shift operators,” Usp. Mat. Nauk,16, No. 4, 3–30 (1961).

    Google Scholar 

  66. B. M. Levitan, Generalized Shift Operators and Some of Their Applications [in Russian], Fizmatgiz, Moscow (1962).

    Google Scholar 

  67. B. M. Levitan, The Theory of Generalized Shift Operators [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  68. B. M. Levitan and A. Ya. Povzner, “Sturm-Liouville differential equations on the semiaxis and the Plancherel theorem,” Dokl. AN SSSR,52, No. 6, 483–486 (1946).

    Google Scholar 

  69. G. L. Litvinov, “Representations of groups in locally convex spaces and topological group algebras,” Proc. of the Seminar on Vector and Tensor Analysis and Their Application to Geometry, Mechanics, and Physics, Moscow State Univ., Vol. 16 (1972), pp. 267–349.

    Google Scholar 

  70. G. L. Litvinov, “On generalized shift operators and their representations,” Proc. of the Seminar on Vector and Tensor Analysis and Their Application to Geometry, Mechanics, and Physics, Moscow State Univ., Vol. 18 (1978), pp. 345–371.

    Google Scholar 

  71. G. L. Litvinov, “On dual topological algebras and topological Hopf algebras,” Proc. of the Seminar on Vector and Tensor Analysis and Their Application to Geometry, Mechanics, and Physics, Moscow State Univ., Vol. 18 (1978), pp. 372–375.

    Google Scholar 

  72. G. L. Litvinov, “Hypergroups and hypergroup algebras,” J. Sov. Math.,38, No. 2 (1987).

  73. V. V. Lyubashenko, “Categories of vector spaces and diagonal symmetries,” Preprint, Kiev Politekh. Inst. (1984).

  74. V. V. Lyubashenko, “Hopf algebra and symmetries,” Preprint, Kiev. Politekh. Inst. (1985).

  75. S. Maclane, Homology [Russian translation], Mir, Moscow (1966).

    Google Scholar 

  76. Yu. I. Manin, “The theory of commutative formal groups over fields of finite characteristics,” Usp. Mat. Nauk,18, No. 6, 3–90 (1963).

    Google Scholar 

  77. M. A. Naimark, Normed Rings [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  78. V. G. Palyutkin, “On the equivalence of two definitions of a finite ring group,” Ukr. Mat. Zh.,16, No. 3, 401–406 (1964).

    Google Scholar 

  79. V. G. Palyutkin, “An invariant measure on a compact ring group,” Ukr. Mat. Zh.,18, No. 4, 49–59 (1966).

    Google Scholar 

  80. V. G. Palyutkin, “On an approximate identity in the group algebra of a ring groups,” Ukr. Mat. Zh.,20, No. 2, 176–182 (1968).

    Google Scholar 

  81. A. Ya. Povzner, “On equations of Sturm-Liouville type and positive functions,” Dokl. AN SSSR,43, No. 9, 387–391 (1944).

    Google Scholar 

  82. A. Ya. Povzner, “On differential equations of Sturm-Liouville type on the semiaxis,” Mat. Sb.,23, No. 1, 3–52 (1948).

    Google Scholar 

  83. L. S. Pontryagin, Continuous Groups [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  84. Yu. S. Samoilenko, Spectral Theory of Collections of Self-Adjoint Operators [in Russian], Naukova Dumka, Kiev (1984).

    Google Scholar 

  85. I. E. Segal, “A noncommutative generalization of abstract integration,” Matematika, Period. Coll. of Transl, of Foreign Articles,6, No. 1, 65–131 (1962).

    Google Scholar 

  86. V. V. Sinyavskii, “The condition of regularity of a Banach algebra connected with the Sturm-Liouville equation,” Dokl. AN UkrSSR, A, No. 11, 988–991 (1977).

    Google Scholar 

  87. V. F. Stinespring, “Theorems on integration with respect to the measure on a group,” Matematika, Period. Coll. of Transi. of Foreign Articles,6, No. 2, 107–149 (1962).

    Google Scholar 

  88. M. Takesaki, “Tomit's theory of modular Hilbert algebras and its applications,” Matematika, Period. Coll. of Transi. of Foreign Articles,18, No. 3, 84–120; No. 4, 34–63 (1974).

  89. N. V. Trunov and A. N. Sherstnev, “Introduction to the theory of noncommutative integration,” J. Sov. Math.,37, No. 6 (1987).

  90. S. Helgason, Differential Geometry and Symmetric Spaces [Russian translation], Mir, Moscow (1964).

    Google Scholar 

  91. E. Hewitt and K. Ross, Abstract Harmonic Analysis [Russian translation], Vol. 1, Nauka, Moscow (1975).

    Google Scholar 

  92. A. N. Sherstnev, “On a general theory of a measure and integral in von Neumann algebras,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 8, 20–35 (1982).

    Google Scholar 

  93. A. I. Shtern, “Duality for wreath products of von Neumann algebras,” J. Sov. Math.,37, No. 6 (1987).

  94. R. Askey and G. Gasper, “Linearization of the product of Jacobi polynomials. III,” Can. J. Math.,23, No. 2, 332–338 (1971).

    Google Scholar 

  95. R. Bürger, “Contributions to duality theory on groups and hypergroups” (Top. Mod. Harmonic Anal., Proc. Sem., Torino and Milano, May–June, 1982, Vol. 2), Roma, 1983, pp. 1055–1070.

    Google Scholar 

  96. A. K. Chilana and K. A. Ross, “Spectral synthesis in hypergroups,” Pac. J. Math.,76, No. 2, 313–328 (1978).

    Google Scholar 

  97. F. Combes, “Poids associe une algèbre hilbertienne à gouche,” Compos. Math.,23, No. 1, 49–77 (1971).

    Google Scholar 

  98. P. Corsini, “Ippergruppi semiregolarie regolari,” Rend. Sem. Mat. Univ. Politecn. Torino,40, No. 3, 35–46 (1982).

    Google Scholar 

  99. P. Corsini, “Recenti resultati in teoria degli ipergruppi,” Boll. Unione Mat. Ital.,A2, No. 2, 133–138 (1983).

    Google Scholar 

  100. J. De Canniere, “An illustration of the noncommutative duality theory for locally compact groups,” Bull. Soc. Math. Belg.,31, No. 1, 57–66 (1979).

    Google Scholar 

  101. J. De Canniere, “On the intrinsic group of a Kac algebra,” Proc. London, Math. Soc.,40, No. 1, 1–20 (1980).

    Google Scholar 

  102. J. De Canniere, E. Enock, and J. M. Schwartz, “Algèbres de Fourier associées à une Algèbre de Kac,” Math. Ann.,245, No. 1, 1–22 (1979).

    Google Scholar 

  103. J. De Canniere, M. Enock, and J. M. Schwartz, “Sur deux resultats d'analyse harmonique noncommutative: une application de la theorie des algebres de Kac,” J. Operator Theory,5, 171–194 (1981).

    Google Scholar 

  104. J. Delsarte, “Sur une extension de la formule de Taylor,” J. Math. Pures Appl.,17, No. 3, 213–231 (1938).

    Google Scholar 

  105. J. Delsarte, “Sur certaines transformations fonctionelles relatives aux equations lineaires aux derivees partielles du second ordre,” C. R. Acad. Sci.,206, 178–182 (1938).

    Google Scholar 

  106. J. Delsarte, “Hypergroupes et operateurs de permutation et de transmutation,” Colloq. Internat Centre Nat. Rech. Scient.,71, 29–45 (1956).

    Google Scholar 

  107. J. Dixmier, “Les algèbres d'opérateurs dans l'espace hilbertien (algèbres de von Neumann), Paris: Gauthier-Villars (1969), p. 367.

    Google Scholar 

  108. Ch. F. Dunkl, “The measure algebra of a locally compact hypergroup,” Trans. Am. Math. Soc.,179, May, 1973, pp. 331–348.

    Google Scholar 

  109. Ch. F. Dunkl, “Structure hypergroups for measure algebras,” Pac. J. Math.,47, No. 2, 413–425.

  110. Ch. F. Dunkl and D. E. Ramirez, “A family of countably compact P-hypergroups,” Trans. Am. Math. Soc.,202, Feb., 1975, pp. 339–356.

    Google Scholar 

  111. M. Enock and J. M. Schwartz, “Une dualité dans les algèbres de von Neumann,” C. R. Acad. Sci., AB277, No. 14, A683-A685 (1973).

    Google Scholar 

  112. M. Enock and J. M. Schwartz, “Une categorie d'algèbres de Kac,” C. R. Acad. Sci.,AB279, No. 16, A643-A645 (1974).

    Google Scholar 

  113. M. Enock and J. M. Schwartz, “Extension de la categorie des algebres de Kac,” Publ. Math. de l'université Pierre et Marie Curie, No. 56, 30 (1983).

    Google Scholar 

  114. M. Enock and J. M. Schwartz, “Systemes dynamiques generalises et correspondances,” J. Oper. Theory,11, No. 2, 273–303 (1984).

    Google Scholar 

  115. M. Enock and J. M. Schwartz, “Moyennabilite des groups localement compacts et algèbres de Kac,” C. R. Acad. Sci., Sér. 1,300, No. 18, A625-A626 (1985).

    Google Scholar 

  116. J. Ernest, “Hopf-von Neumann algebras,” Proc. Conf. Funct. Anal. (Irvine, CA), New York, Academic Press (1967), pp. 195–217.

    Google Scholar 

  117. P. Eymard, “L'algèbre de Fourier d'un groupe localement compact,” Bull. Soc. Math. France,92, No. 2, 181–236 (1964).

    Google Scholar 

  118. G. Gasper, “Linearization of the product of Jacobi polynomials. I,” Can. Math.,22, No. 3, 582–593 (1970).

    Google Scholar 

  119. G. Gasper, “Positivity and the convolution structure for Jacobi series,” Ann. Math.,93, No. 1, 112–118 (1971).

    Google Scholar 

  120. G. Gasper, “Banach algebras for Jacobi series and positivity of a kernel,” Ann. Math.,95, No. 2, 261–280 (1972).

    Google Scholar 

  121. K. Hartmann, [FIA]B-Gruppen und Hypergruppen,” Monatsh. Math.,89, No. 1, 9–17 (1980).

    Google Scholar 

  122. K. Hartmann, R. W. Henrichs, and R. Lasser, “Duals of orbit spaces in groups with relatively compact inner automorphism groups are hypergroups,” Monatsh. Math.,88, No. 3, 229–238 (1979).

    Google Scholar 

  123. W. Hauenschild, “Subhypergroups and normal subgroups,” Math. Ann.,256, No. 1, 1–18 (1981).

    Google Scholar 

  124. W. Hauenschild, K. Kaniuth, and A. Kumar, “Harmonic analysis on central hypergroups and induced representations,” Pac. J. Math.,110, No. 1, 83–112 (1984).

    Google Scholar 

  125. H. Heyer, “Probability theory on hypergroups: a survey,” Lect. Notes Math.,1064, 481–550 (1984).

    Google Scholar 

  126. H. Heyer, “Dualität lokalkompakter Gruppen,” Lect. Notes Math.,150, 375 (1970).

    Google Scholar 

  127. K. H. Hoffmann, “The duality of compact semigroups and C*-bigebras,” Lect. Notes Math.,129, XII, 142 (1970).

    Google Scholar 

  128. K. H. Hofmann, H. Jürgensen, and H. J. Weinert (eds.), “Recent developments in the algebraic, analytical and topological theory of semigroups,” Lect. Notes Math.,998, VI, 486 (1983).

  129. V. Hutson and J. S. Pym, “Generalized translations associated with a differential operator,” Proc. London Math. Soc.,24, No. 3, 543–576 (1972).

    Google Scholar 

  130. C. Jonescu-Tulcea and A. B. Simon, “Spectral representations and unbounded convolution operators,” Proc. Nat. Acad. Sci. USA,45, No. 12, 1765–1767 (1959).

    Google Scholar 

  131. V. M. Iório, “Hopf C*-algebras and locally compact groups,” Pac. J. Math.,87, No. 1, 75–96 (1980).

    Google Scholar 

  132. R. I. Jewett, “Spaces with an abstract convolution of measures,” Adv. Math.,18, 1–101 (1975).

    Google Scholar 

  133. E. Kirchberg, “Representations of coinvolutive Hopf-W*-algebras and non-abelian duality,” Bull. Acad. Pol. Sci. Sér. Sci. Mat., Aston. Phys.,25, No. 2, 117–122 (1977).

    Google Scholar 

  134. E. Kirchberg, “Darstellungen coinvolutiver Hopf-W*-algebren und ihre Anwendung in der nicht-Abelsehen Dualitäts-theorie lokalkompakter Gruppen,” Berlin, Academic der Wiss. der DDR, 1977, p. 354.

    Google Scholar 

  135. T. P. Laine, “The product formula and convolution structure for generalized Chebyshev polynomials,” SIAM J. Math. Anal.,11, No. 1, 133–146 (1980).

    Google Scholar 

  136. R. Lasser, “Fourier-Stiltjes transforms on hypergroups,” Analysis,2, No. 1–4, 281–303 (1982).

    Google Scholar 

  137. R. Lasser, “Bochner theorems for hypergroups and their applications to orthogonal polynomial expansions,” J. Approx. Theory,37, No. 4, 311–325 (1983).

    Google Scholar 

  138. R. Lasser, “Orthogonal polynomials and hypergroups,” Rend. Mat. Appl.,3, No. 2, 185–209 (1983).

    Google Scholar 

  139. Antony Toming Lau, “Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups,” Fund. Math.,118, No. 3, 161–175 (1983).

    Google Scholar 

  140. N. Leblanc, “Algebres de Banach associees a un operateur differentiel de Sturm-Liouville,” Lect. Notes Math.,336, 40–50 (1973).

    Google Scholar 

  141. G. Maltese, “Spectral representations for solution of certain abstract functional equations,” Compositio Math.,15, No. 1, 1–22 (1961).

    Google Scholar 

  142. G. Maltese, “Spectral representations for some unbounded normal operators,” Trans. Am. Math. Soc.,110, No. 1, 79–89 (1964).

    Google Scholar 

  143. F. Mayer-Lindenberg, “Zur Dualitätstheorie symmetrischer Paare,” J. Reine Angew. Math.,321, 36–52 (1981).

    Google Scholar 

  144. J. R. McMullen and T. F. Price, “Duality for finite abelian hypergroups over splitting fields,” Bull. Australian Math. Soc.,20, No. 1, 57–70 (1979).

    Google Scholar 

  145. E. A. Michael, “Topologies on spaces of subsets,” Trans. Am. Math. Soc.,71, 152–182 (1951).

    Google Scholar 

  146. J. S. Pym, “Weakly separately continuous measure algebras,” Math. Ann.,175, No. 3, 207–219 (1968).

    Google Scholar 

  147. J. S. Pym, “Dual structures for measure algebras,” Proc. London Math. Soc.,19, No. 4, 625–660 (1969).

    Google Scholar 

  148. K. A. Ross, “Hypergroups and centers of measure algebras,” Symp. Math. Inst. Naz. Alta Mat., London-New York,22, 189–203 (1977).

    Google Scholar 

  149. K. A. Ross, “Centers of hypergroups,” Trans. Am. Math. Soc.,243, 251–269 (1978).

    Google Scholar 

  150. R. L. Roth, “Character and conjugacy class hypergroups of a finite group,” Ann. Mat. Pura Appl.,55, 295–311 (1975).

    Google Scholar 

  151. S. Sankaran, “Hochschild-Tannaka duality theorem for homogeneous spaces,” Rend. Sem. Mat. Univ. Politech. Troino, 1977–1978,36, pp. 59–85.

    Google Scholar 

  152. S. Sankaran and S. A. Selesnick, “Some remarks on C*-bigebras and duality,” Semigroup Forum,3, No. 2, 108–129 (1971).

    Google Scholar 

  153. A. Schwartz, “Generalized convolutions and positive-definite functions associated with general orthogonal series,” Pac. J. Math.,55, No. 2, 565–582 (1974).

    Google Scholar 

  154. J. M. Schwartz, “Relations entre ‘ring groups’ et algèbres de Kac,” Bull. Sci. Math.,100, No. 4, 289–300 (1976).

    Google Scholar 

  155. J. M. Schwartz, “Kac algebras,” Proc. Int. Conf. Oper. Algebras, Ideals and Appl. Theor. Phys., Leipzig, 1977, Leipzib, 1978, pp. 215–223.

  156. J. M. Schwartz, “Sur la structure des algèbres de Kac. I,” J. Funct. Anal.,34, No. 3, 370–406 (1979); II. Proc. London Math. Soc.,41, No. 3, 465–480 (1980).

    Google Scholar 

  157. R. Spector, “Apercu de la theorie des hypergroupes,” Lect. Notes Math.,497, 147–165 (1975).

    Google Scholar 

  158. R. Spector, “Dualite des hypergroupes commutatifs,” C. R. Acad. Sci.,281, No. 1, A27-A30 (1975).

    Google Scholar 

  159. R. Spector, “Measures invariantes sur les hypergroupes,” Trans. Am. Math. Soc.,239, 147–165 (1978).

    Google Scholar 

  160. C. E. Sutherland, “Direct integral theory for weights and the Plancherel formula,” Bull. Am. Math. Soc.,80, No. 3, 456–461 (1974).

    Google Scholar 

  161. Masamichi Takesake, “A characterization of group algebras as a converse of Tannaka — Stinespring-Tatsuuma duality theorem,” Am. J. Math.,91, No. 2, 529–564 (1969).

    Google Scholar 

  162. Masamichi Takesaki, “Duality and von Neumann algebras,” Bull. Am. Math. Soc.,77, No. 4, 553–557 (1971); Lect. Notes Math.,247, 665–786 (1972).

    Google Scholar 

  163. Masamichi Takesaki and Nobuhiko Tatsuuma, “Duality and subgroups. I,” Ann. Math.,93, No. 2, 344–364 (1971); II. J. Funct. Anal.,11, No. 2, 184–190 (dy1972).

    Google Scholar 

  164. T. Tannaka, “Über der Dualitätssatz der nichtkommutativen topologischen Gruppen,” Tohoku Math. J.,53, 1–2 (1938).

    Google Scholar 

  165. Nobuhiko Tatsuuma, “A duality theorem for locally compact group. I,” Proc. Jpn. Acad., No. 10, 878–882 (1965); II. Proc. Jpn. Acad.,42, No. 1, 46–47 (1966); J. Math. Kyoto Univ.,6, No. 2, 187–294 (1967).

    Google Scholar 

  166. E. G. F. Thomas, “The theorem of Bochner-Schwartz-Godement for generalized Gelfand pairs,” ZW-Rept. Math. Inst. Rijksuniv. Gröningen, 1983, s.a. No. 8312, p. 14.

  167. E. G. F. Thomas, “An infinitezimal characterization of Gelfand pairs,” ZW-Rept. Math. Inst. Rijksuniv. Groningen, 1983, s.a. No. 8313, p. 10.

  168. J. M. Vallin, “C-algebres de Hopf et C-algebres de Kac,” Proc. London Math. Soc.,50, No. 1, 131–174 (1985).

    Google Scholar 

  169. D. Voiculescu, “Amenability and Katz algebras,” Colloq. Int. CNRS. No. 274, 451–457 (1978).

    Google Scholar 

  170. R. C. Vrem, “Lacunarity on compact hypergroups,” Math. Z.,164, No. 2, 93–104 (1978).

    Google Scholar 

  171. R. C. Vrem, “Harmonic analysis on compact hypergroups,” Pac. J. Math.,85, No. 1, 239–251 (1979).

    Google Scholar 

  172. R. C. Vrem, “Continuous measures and lacunarity on hypergroups,” Trans. Am. Math. Soc.,269, No. 2, 549–556 (1982).

    Google Scholar 

  173. R. C. Vrem, “Hypergroup joins and their dual objects,” Pac. J. Math.,111, No. 2, 483–495 (1984).

    Google Scholar 

  174. M. E. Walter, “W*-algebras and nonabelian harmonic analysis,” J. Funct. Anal.,11, No. 1, 17–38 (1972).

    Google Scholar 

  175. S. Wolfenstetter, “Jacobi-Polinome und Bessel-Funktionen unter dem Gesichtspunkt der harmonischen Analyse,” Diss. Dokt. Naturwiss. Fak. Math. und Inf. Techn. Univ. München (1984), p. 86.

Download references

Authors

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Matematicheskii Analiz, Vol. 24, pp. 165–205, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vainerman, L.I. Duality of algebras with an involution and generalized shift operators. J Math Sci 42, 2113–2138 (1988). https://doi.org/10.1007/BF01106939

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01106939

Keywords

Navigation