Skip to main content
Log in

The cubic-to-β martensitic transformation in ZrO2-Sc2O3

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The nature of the cubic-to-β (c-β) transformation and the microstructure of theβ-phase were examined in ZrO2-10.5 and 12.5 mol % Sc2O3 alloys. The c -β transformation is induced during cooling from the high-temperature cubic phase region by martensitic transformation. The microstructure of theβ-phase usually has a herring-bone appearance, which is made of a unique array of four orientation variants. Two types of interfaces are formed in the structure; long straight interfaces and short interfaces. The former and the latter interfaces are nearly parallel to the {011} β and {012} β type planes, respectively, which correspond to the {001}c and {011}c planes in the parent cubic phase. The {011} β and {012} β type interfaces are fully coherent, low-energy interfaces. The herring-bone structure is likely to be a favourable one for minimizing the strain energy and interfacial energy associated with the c -β transformation, which is a characteristic microstructure developed by martensitic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. M. Spiridonov, L. N. Popova andR. Ya. Popilśkii,J. Solid State Chem. 2 (1970) 430.

    Google Scholar 

  2. M. V. Inozemtsev, M. V. Perfilev andV. P. Gorelov,Sov. Electrochem. 12 (1976) 1128.

    Google Scholar 

  3. F. K. Moghadam, T. Yamashita, R. Sinclair andD. A. Stevenson J. Amer. Ceram. Soc. 66 (1983) 213.

    Google Scholar 

  4. R. Ruh, H. J. Garrett, R. F. Domagala andV. A. Patel,ibid. 60 (1977) 399.

    Google Scholar 

  5. M. R. Thornver andD. J. M. Bevan,Acta Crystallogr. B24 (1968) 1183.

    Google Scholar 

  6. T. Sakuma, Y. Yoshizawa andH. Suto,J. Mater. Sci. 20 (1985) 2399.

    Google Scholar 

  7. J. Lefevre,Ann. Chim. 8 (1963) 117.

    Google Scholar 

  8. H. Hasegawa,J. Mater. Sci. Lett. 2 (1983) 91.

    Google Scholar 

  9. C. Laird andR. Sankaran,J. Microscopy 116 (1979) 123.

    Google Scholar 

  10. A. G. Evans andP. L. Pratt,Phil. Mag. 20 (1969) 1213.

    Google Scholar 

  11. J. P. Hirth andJ. Lothe, “Theory of dislocations” (McGraw-Hill, New York, 1968) p. 738.

    Google Scholar 

  12. J. M. Marder andA. R. Marder,Trans. Amer. Soc. Metals 62 (1969) 1.

    Google Scholar 

  13. T. Sakuma, Y. Yoshizawa andH. Suto,J. Mater. Sci. Lett. 4 (1985) 29.

    Google Scholar 

  14. T. Tadaki, Y. Katano andK. Shimizu,Acta Metall. 26 (1978) 883.

    Google Scholar 

  15. J. W. Christian, “The mechanism of phase transformations in crystalline solids”Monograph and Report Series No. 33 (The Institute of Metals, London, 1969) p. 129.

    Google Scholar 

  16. E. C. Subbarao, H. S. Maiti andK. K. Srivastava,Phys. Status Solidi (a) 21 (1974) 9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakuma, T., Suto, H. The cubic-to-β martensitic transformation in ZrO2-Sc2O3 . J Mater Sci 21, 4359–4365 (1986). https://doi.org/10.1007/BF01106556

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01106556

Keywords

Navigation