Skip to main content
Log in

The effect of molecular size on non-Fickian sorption in glassy polymers

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Rutherford backscattering spectrometry has been used to determine the concentration against depth profiles of n-iodoalkanes diffusing into a polymer glass photoresist. All the iodoalkanes smaller than iodohexane show strongly non-Fickian, or Case II, diffusion. After an induction time a sharp front forms, with almost no concentration gradient behind the front. Ahead of the front the concentration decreases exponentially with depth, a form predicted for Fickian diffusion ahead of a moving boundary. Values of the diffusion coefficientD extracted from this Fickian precursor decrease strongly withn, the number of carbon atoms in the iodoalkane. A similar decrease is observed for the front velocity, the magnitude of which is in qualitative agreement with that predicted by the Thomas and Windle model of Case II diffusion. For the larger values ofn, D decreases asn −2, prompting speculation that these longer chains diffuse into the glass by a reptation-like mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Crank andG. S. Park,Trans. Faraday Soc. 82 (1951) 1072.

    Google Scholar 

  2. J. Crank,J. Polym. Sci. 11 (1953) 151.

    Google Scholar 

  3. G. S. Park,ibid. 11 (1953) 97.

    Google Scholar 

  4. E. Bagley andF. A. Long,J. Amer. Chem. Soc. 77 (1955) 2172.

    Google Scholar 

  5. A. C. Newns,Trans. Faraday Soc. 52 (1956) 1533.

    Google Scholar 

  6. R. A. Ware andC. Cohen,J. Appl. Polym. Sci. 25 (1980) 717.

    Google Scholar 

  7. R. A. Ware, S. Tirtowidjojo andC. Cohen,ibid. 26 (1981) 2975.

    Google Scholar 

  8. H. L. Frisch, T. T. Wang andT. K. Kwei,J. Polym. Sci. A2 7 (1969) 872.

    Google Scholar 

  9. T. T. Wang, T. K. Kwei andH. L. Frisch,ibid. 7 (1969) 2019.

    Google Scholar 

  10. A. Peterlin,J. Polym. Sci. B 3 (1965) 1083.

    Google Scholar 

  11. Idem, Makromol. Chem. 124 (1969) 136.

    Google Scholar 

  12. Idem, J. Res. NBS 81A (1977) 243.

    Google Scholar 

  13. G. S. Park, in “Diffusion in Polymers”, edited by J. Crank and G. S. Park (Academic Press, London, 1968) p. 114.

    Google Scholar 

  14. J. H. Petropolis andP. P. Rousis,J. Chem. Phys. 47 (1967) 1491.

    Google Scholar 

  15. Idem, J. Polym. Sci. C 22 (1969) 917.

    Google Scholar 

  16. J. H. Petropolis,J. Polym. Sci., Polym. Phys. 22 (1984) 183.

    Google Scholar 

  17. G. Sarti,Polymer 20 (1979) 827.

    Google Scholar 

  18. N. L. Thomas andA. H. Windle,ibid. 23 (1982) 529.

    Google Scholar 

  19. L. Nicolais, E. Dricoli, H. B. Hopfenberg andD. Tidone,ibid. 18 (1977) 137.

    Google Scholar 

  20. N. L. Thomas andA. H. Windle,ibid. 18 (1977) 1195.

    Google Scholar 

  21. F. A. Long andD. Richmond,J. Amer. Chem. Soc. 82 (1960) 513.

    Google Scholar 

  22. P. J. Mills, C. J. Palmstrøm andE. J. Kramer,J. Mater. Sci. 21 (1986) 1479.

    Google Scholar 

  23. T. Alfrey,Chem. Eng. News 43 (1965) 64.

    Google Scholar 

  24. W.-K. Chu, J. W. Mayer andM.-A. Nicolet, “Backscattering Spectrometry” (Academic Press, New York, 1978) pp. 21–53.

    Google Scholar 

  25. H. S. Carslaw andJ. C. Jaeger, “Conduction of Heat in Solids” (Oxford University Press, Oxford, UK) p. 373.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mills, P.J., Kramer, E.J. The effect of molecular size on non-Fickian sorption in glassy polymers. J Mater Sci 21, 4151–4156 (1986). https://doi.org/10.1007/BF01106522

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01106522

Keywords

Navigation