Journal of Materials Science

, Volume 24, Issue 5, pp 1853–1861 | Cite as

Dense single-phase β-sialon ceramics by glass-encapsulated hot isostatic pressing

  • Thommy Ekström
  • P. O. Käll
  • Mats Nygren
  • P. O. Olsson


Single phaseβ-sialon ceramics, Si6−zAlzOzN8−z, have been prepared from carefully balanced powder mixtures, also taking account of any excess oxygen in the starting materials. Sintering powder compacts in a nitrogen atmosphere (0.1 MPa) at 1800° C or higher transforms the starting mixture into aβ-sialon solid solution atz-values up to about 4.3, but the sintered material has an open porosity. Addition of 1 wt% Y2O3 to the starting mix improved the sintering behaviour somewhat and the density of the sintered compacts reached 95% of the theoretical value. By glass-encapsulated hot isostatic pressing at 1825° C, however, sintered materials of virtually theoretical density could be obtained, with or without the 1 wt% Y2O3 addition. These latter samples have been studied by X-ray diffraction and electron microscopy, and their hardness and indentation fracture toughness have been measured. It was found that the maximum extension of theβ-sialon phase composition at 1825° C and 200 MPa pressure is slightly below 4,z∼ 3.85 and about 4.1 at atmospheric pressure, and that the hexagonal unit cell parameters are linear functions of thez-value. The single-phaseβ-sialon ceramics had no residual glassy grain-boundary phase. The grain shape was equi-axed and the grain size increased from about 1μm at lowz-values to 5μm at highz-values. At lowz-values the hardness at a 98 N load was 1700 and the fracture toughness 3, whereas an increase inz above 1 caused both the hardness and fracture toughness to decrease significantly. Addition of 1 wt % Y2O3 to the starting mix prior to the HIP-sintering gave rise to a small amount of amorphous intergranular phase, changes in grain size and shape, a clear increase in fracture toughness and a moderate decrease in hardness.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. H. Jack andW. I. Wilson,Nature Phys. Sci. 238 (1972) 28.Google Scholar
  2. 2.
    Y. Oyama andO. Kamigaito,Jpn J. Appl. Phys. 10 (1971) 1637.Google Scholar
  3. 3.
    J. Briggs,Mater. Res. Bull. 12 (1977) 1047.Google Scholar
  4. 4.
    M. N. Rahaman, F. L. Riley andR. J. Brook,J. Mater. Sci. 16 (1981) 660.Google Scholar
  5. 5.
    S. Umebayashi, K. Kishi, E. Tani andK. Kobayashi,Yogyo Kyokai Shi 92 (1984) 35.Google Scholar
  6. 6.
    E. Tani, H. Ichinose, K. Kishi, S. Umebayashi andK. Kobayashi,ibid. 92 (1984) 675.Google Scholar
  7. 7.
    M. N. Rahaman, Y. Boiteux andL. C. De Jonghe,Amer. Ceram. Soc. Bull. 65 (1986) 1171.Google Scholar
  8. 8.
    M. H. Lewis, B. D. Powell, P. Drew, R. J. Lumby, B. North andA. J. Taylor,J. Mater. Sci. 12 (1977) 61.Google Scholar
  9. 9.
    Y. Miyamoto, K. Tanaka, M. Shimada andM. Koizumi, in “Ceramic Materials and Components for Engines”, edited by W. Bunk and H. Hausner (Deutsche Keramische Gesellschaft, Lübeck-Travemünde, 1986) p. 271.Google Scholar
  10. 10.
    N. Ingelström andT. Ekström, Proceedings of International Conference on Hot Isostatic Pressing, Luleå, Sweden, 15–16 June 1987 (Centek, Sweden, 1988).Google Scholar
  11. 11.
    H. Larker, in “Progress in Nitrogen Ceramics”, edited by F. L. Riley (Martinus Nijhoff, The Hague, 1983) p. 717.Google Scholar
  12. 12.
    M. Mitomo, N. Kuramoto andH. Suzuki, Proceedings of International Symposium on Factors in Densification and Sintering of Oxides and Non-Oxide Ceramics, Japan 1978, p. 463.Google Scholar
  13. 13.
    G. R. Anstis, P. Chantikul, B. R. Lawn andD. B. Marshall,J. Amer. Ceram. Soc. 64 (1981) 533.Google Scholar
  14. 14.
    C. Chatfield andH. Norström,ibid. 66 (1983) C-168.Google Scholar
  15. 15.
    F. K. Van Dijen, R. Metselaar, R. B. Helmholdt,J. Mater. Sci. Lett. 6 (1987) 1101.Google Scholar
  16. 16.
    M. A. O'Keefe, in “Electron Optical Systems for Microscopy, Microanalysis and Microlithography”, edited by J. J. Hren, F. A. Lenz, E. Munro and P. B. Sewer, 1984 (SEM Inc., Illinois, 1984).Google Scholar
  17. 17.
    C. Chatfield, T. Ekström andM. Mikus,J. Mater. Sci. 21 (1986) 2297.Google Scholar
  18. 18.
    P. O. Olsson, to be published.Google Scholar
  19. 19.
    S. Boskovic, L. J. Gauckler, G. Petzow andT. Y. Tien, in “Sintering Processes”, edited by G. C. Kuczynski (Plenum Press, London, 1980) p. 295.Google Scholar
  20. 20.
    M. N. Rahaman, F. L. Riley andR. J. Brook,J. Mater. Sci. 16 (1981) 660.Google Scholar
  21. 21.
    S. Bandyopadhyay andJ. Mukerji,J. Amer. Ceram. Soc. 79 (1987) C-273.Google Scholar
  22. 22.
    R. J. Lumby, B. North andA. Tayler,Spec. Ceramics 6 (1975) 283.Google Scholar
  23. 23.
    P. L. Land, J. M. Wimmer, R. W. Burns andN. S. Choudbury,J. Amer. Ceram. Soc. 61 (1978) 56.Google Scholar
  24. 24.
    A. Takase, S. Umebayashi andK. Kishi,J. Mater. Sci. Letters 1 (1982) 529.Google Scholar
  25. 25.
    A. Takase andE. Tani,ibid. 3 (1984) 1058.Google Scholar
  26. 26.
    JCPDS XRD-card No. 9-259 (The American Society for Testing Materials).Google Scholar
  27. 27.
    R. Grun,Acta Cryst. B35 (1979) 800.Google Scholar
  28. 28.
    M. Haviar andO. Johannesen,Adv. Ceram. Mater. 3 (1988) 405.Google Scholar
  29. 29.
    P. Greil andJ. Weiss,J. Mater. Sci. 17 (1982) 1571.Google Scholar
  30. 30.
    D. Chakraborty andJ. Mukerji,ibid. 15 (1980) 3051.Google Scholar
  31. 31.
    R. J. Lumby,J. Mater. Sci. Lett. 2 (1983) 345.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1989

Authors and Affiliations

  • Thommy Ekström
    • 1
  • P. O. Käll
    • 2
  • Mats Nygren
    • 2
  • P. O. Olsson
    • 2
  1. 1.AB Sandvik Hard MaterialsStockholmSweden
  2. 2.Department of Inorganic Chemistry, Arrhenius LaboratoryUniversity of StockholmStockholmSweden

Personalised recommendations