Journal of Materials Science

, Volume 27, Issue 18, pp 5015–5026 | Cite as

Thermal expansion of phenolic resin and phenolic-fibre composites

  • J. T. Mottram
  • B. Geary
  • R. Taylor


A large number of thermal expansion measurements in the temperature range 20 to 300‡C are presented for the Monsanto phenolic resin SC-1008 as a function of heating rate, position in cured block, curing treatment and repeated heating cycles. Thermal expansion measurements in those directions where the resin dominates are also reported up to 400‡C for composite systems consisting of the phenolic resin reinforced with ∼60% (volume fraction) of either continuous unidirectional silica or bidirectional carbon (rayon precursor) fibres. The large variation in thermal expansion measurements is used to show that current curing treatments for the materials do not yield a resin with predictable expansion response. Annealing at a higher temperature (>200 ‡C) than the maximum used in the curing treatments is shown to stabilize the phenolic resin SC-1008. Then, the mean linear coefficient of thermal expansion for the pure resin up to 100 ‡C is within the range (55±5)×10−6‡C−1.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. V. Noyes,Composites 14 (1983) 129.Google Scholar
  2. 2.
    E. Fitzer,J. Chim. Phys. 81 (1984) 717.Google Scholar
  3. 3.
    C. G. Goetzel,High Temp. High Press. 12 (1980) 131.Google Scholar
  4. 4.
    W. A. Clayton, P. B. Kennedey, R. J. Evans, J. E. Cotton, A. C. Francisco andT. J. Fabish, Report AFML-TR-67-413 (Air Force Material Laboratory, Wright Patterson Air Force Base, Ohio, 1967).Google Scholar
  5. 5.
    B. Yates, M. J. Overy, J. P. Sargent andB. A. McCalla,J. Mater. Sci. 12 (1977) 718.Google Scholar
  6. 6.
    Idem., ibid. 13 (1978) 433.Google Scholar
  7. 7.
    B. Yates, M. Chandra, S. F. H. Parker, K. F. Roger, D. M. Kingston-Lee andL. N. Phillips,ibid. 16 (1981) 2803.Google Scholar
  8. 8.
    R. Taylor, in “International Encyclopedia of Composites”, Vol. 5, edited by S. M. Lee (VCH Publishers, New York, 1991) pp. 531–48.Google Scholar
  9. 9.
    J. T. Mottram andR. Taylor,Compos. Sci. Techn. 29 (1987) 189.Google Scholar
  10. 10.
    Idem., ibid. 29 (1987) 211.Google Scholar
  11. 11.
    Monsanto Polymers and Petrochemicals Co., Private Communication (1988).Google Scholar
  12. 12.
    Ministry of Defence, Private Communication (1988).Google Scholar
  13. 13.
    G. L. Denman, Report AFML-TR-65-279 (Air Force Materials Laboratory, Wright Patterson Air Force Base, Ohio, 1965).Google Scholar
  14. 14.
    R. L. Pegg, Internal Report (H. I. Thompson Fiber Glass Co., Ontario, Canada, 1965).Google Scholar
  15. 15.
    S. So andA. Rudin,J. Polym. Sci.: Polymer Lett. 23 (1985) 403.Google Scholar
  16. 16.
    A. Vaquez, H. E. Adabbo andR. J. J. Williams,Ind. Eng. Chem. Prod. Res. Dev. 23 (1984) 375.Google Scholar
  17. 17.
    “Engineers' Guide to Composite Materials” (ASM International, Metals Park, Ohio, 1988).Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • J. T. Mottram
    • 1
  • B. Geary
    • 1
  • R. Taylor
    • 1
  1. 1.Manchester Materials Science CentreUniversity of Manchester/UMISTManchesterUK

Personalised recommendations