Skip to main content
Log in

Effect of laser surface melted zirconium alloys on microstructure and corrosion resistance

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Zirconium alloys were laser surface melted (LSM) using a continuous wave CO2 laser at energy densities of 4,7 and 10 kJ cm−2. LSM samples examined using SEM and optical microscopy exhibited resolidified regions with several different microstructures, including ultrafine martensite. Corrosion performance was obtained by steam autoclave tests and immersion tests in 10% FeCl3 at room temperature. Coarser microstructures performed better than fine microstructures in autoclave tests, while fine microstructures performed better than coarse microstructures in 10% FeCl3 immersion tests. Accelerated corrosion in the autoclave and immersion tests was observed to occur near the laser beam overlap region. The surface chemistry was examined for alloy segregation using secondary iron mass spectroscopy. Tin and iron alloy elements segregated near the periphery of each melt pool. Segregated regions containing increased iron concentrations associated with each laser pass were responsible for accelerated corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Fontana, in “Advances in Corrosion Science and Technology”, Vol. 6, edited by M. G. Fontana and R. W. Staehle (Plenum, New York, 1976) pp. 227–45.

    Google Scholar 

  2. H. G. Rickover, L. D. Gieger, andB. Lustman, NR: D; 1975, USERDA, March 1975, p. 1081.

  3. J. N. Wanklyn andP. J. Jones,J. Nucl. Mater. 6 (1962) 291.

    Google Scholar 

  4. V. Quach andD. O. Northwood, “Optimizing Materials for Nuclear Application” (1984) pp. 51–62.

  5. A. B. Johnson Jr, ASTM STP 458 (American Society for Testing and Materials, Philadelphia, 1969) pp. 271–85.

    Google Scholar 

  6. S. Kass, ASTM STP 368 (American Society for Testing and Materials, Philadelphia, 1964) pp. 3–27.

    Google Scholar 

  7. J. N., Wanklyn, ASTM STP 368 (American Society for Testing and Materials, Philadelphia, 1964) pp. 58–75.

    Google Scholar 

  8. B. Cox, in “Advances in Corrosion Science and Technology”, Vol. 5, edited by M. G. Fontana and R. W. Staehle (Plenum, New York, 1976) pp. 251–321.

    Google Scholar 

  9. M. A. Maguire andT. L. Yau, NACE Conference, Paper No. 265 (1986) pp. 1–20.

  10. J. H. Schemel, ASTM STP 639 (American Society for Testing and Materials, Philadelphia, 1977) pp. 1–93.

    Google Scholar 

  11. T. L. Yau andM. A. Maguire,Corrosion 40 (1984) 289.

    Google Scholar 

  12. Idem, ibid. 41 (1985) 397.

    Google Scholar 

  13. R. W. Ohse,Pure Appl. Chem.,60 (1988) 309.

    Google Scholar 

  14. Y. Arata, “Plasma, Electron and Laser Beam Technology,” (ASM, Metals Park, OH, 1986).

    Google Scholar 

  15. C. W. Draper, F. J. denBroeder,D, C. Jacobson, E. N. Kaufmann, M. L. McDonald andJ. M. Vandenberg, “Laser and Electron-Beam Interactions with Solids” (Elsevier Science, 1982) pp. 419–424.

  16. E. McCafferty andP. G. Moore, “Laser Surface Treatment of Metals”, edited by C. W. Draper and P. Mazzoldi (Martinus Nijhoff, Boston, 1986) pp. 263–95.

    Google Scholar 

  17. J. W. Davis, A. A. Haasz andP. C. Stangeby,J. Nucl. Mater. 138 (1986) 227.

    Google Scholar 

  18. W. M. Steen, “International Conference on Advances in Surface Coating Technology” (The Welding Institute, Avington, Cambridge, 1978) pp. 175–87.

    Google Scholar 

  19. C. R. Clayton, “Environmental Degradation of Ion and Laser Beam Treated Surfaces”, edited by G. S. Wart and K. S. Grabowski (TMS, Philadelphia, 1989) pp. 33–55.

    Google Scholar 

  20. J. M. Poate,ibid.“ pp. 23–30.

    Google Scholar 

  21. W. Reitz andJ. Rawers,J. Mater. Sci. Lett. 9 (1990) 1365.

    Google Scholar 

  22. C. Evans Jr andR. Blattner,Newsletter, Charles Evans and Assoc. 5 (2) (1990) pp. 10–11.

    Google Scholar 

  23. M. J. Aziz,J. Appl. Phys. 53 (1982) 1158.

    Google Scholar 

  24. A. Kar andJ. Mazumder,ibid. 61 (1987) 2645.

    Google Scholar 

  25. J. Mazumder andW. M. Steen, in “Laser '77”, Opto-Electronics Conference, edited by W. Weidelich (1977) pp. 304–15.

  26. Idem, Metal Construct. 12 (1980) 423.

    Google Scholar 

  27. T. Chande andJ. Mazumder,Met. Trans. 14B (1983) 181.

    Google Scholar 

  28. P. Baeri, S. U. Compisano, M. G. Grimaldi andE. Rimini, in “Laser and Electron Beam Processing of Materials”, MRS Symposium (1979) pp. 130–6.

  29. C. W. Draper,ibid. pp. 721–7.

  30. A. Richard, “Fr. Ann. Chem. 13 (1988) 284.

    Google Scholar 

  31. E. Hillner, ASTM STP 633, (American Society for Testing and Materials, Philadelphia, 1977) pp. 211–35.

    Google Scholar 

  32. T. L. Yau, “Corrosion and Corrosion Protection Handbook”, edited by P. A. Schweitzer (Marcel Dekker, New York, 1988) pp. 231–78.

    Google Scholar 

  33. R. Kuwae, K. Sato, J. Kawashima andE. Higashinakagawa,N. Nucl. Sci. Tech. 23 (1986) 661.

    Google Scholar 

  34. N. Sato,Corrosion 45 (1989) 354.

    Google Scholar 

  35. D. M. Follstaedt, in “Laser and Electron-Beam Interactions with Solids”, MRS Symposium (1981) pp. 377–87.

  36. M. J. Chappel andJ. S. Leach, “Passivity of Metals” (Electrochemical Society, Houston, Texas, 1978) pp. 1003–34.

    Google Scholar 

  37. S. Smith,Charles Evans and Assoc. Report 13 May (1990) 1.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reitz, W., Rawers, J. Effect of laser surface melted zirconium alloys on microstructure and corrosion resistance. J Mater Sci 27, 2437–2443 (1992). https://doi.org/10.1007/BF01105055

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01105055

Keywords

Navigation