Advertisement

Ukrainian Mathematical Journal

, Volume 29, Issue 3, pp 300–304 | Cite as

Investigation of nonlinear integrodifferential systems with autoregulation within the limits of integration, generalizing the mathematical model of dynamics of bifilar elevation

  • L. E. Krivoshein
  • A. Kutanov
  • D. I. Mangeron
  • M. N. Oguztoreli
Brief Communications

Keywords

Mathematical Model Integrodifferential System Nonlinear Integrodifferential System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    D. Mangeron and M. N. Oguztoreli, “Boundary value and optimal control concerned with various types of ‘polyvibrating’ equations,” in: Advances in Differential and Integral Equations, John A. Nohel (editor), SIAM, Philadelphia (1969).Google Scholar
  2. 2.
    L. E. Krivoshein, D. Mangeron, and M. N. Oguztoreli, “Determinazione delle soluzioni di un sistema di equazioni integrodifferenziali non lineari di dimensioni diverse tra di loro e con derivate totali di Picone,” Atti Accad. Naz. dei Lincei. Rend., Cl. Sci. Fis., Mat. e Nat. (8),59, Nos. 1–2 14–21 (1976).Google Scholar
  3. 3.
    L. E. Krivoshein, A. Kutanov, K. V. Leung, and M. N. Oguztoreli, “Systèmes differentials possédant la structure complexe. Problèmes á la frontière aux conditions initiales fonctionnelles pour une classe d'équations integrodifferentielles de Mangeron aux intégrales d'Urysohn,” Bull. Soc. Math, de Belgique,27, 57–65 (1975).Google Scholar
  4. 4.
    S. Dzhunuzbekova, L. E. Krivoshein, K. V. Leung, and M. N. Oguztoreli, “Problèmes concernant differentes classes d'equations integrodifferentielles non lineaires de Mangeron. 1,” Atti Accad. Naz. Lincei, Rend., Ch. Sci. Fis., Mat. e. Nat. (8),56, 151–156 (1974).Google Scholar
  5. 5.
    Yu. A. Mitropol'skii and A. M. Samoilenko, “On asymptotic integration diakly nonlinear systems,” Ukr. Mat. Zh.,28, No. 4, 483–500 (1976).Google Scholar
  6. 6.
    Yu. A. Mitropol'skii and P. F. Fil'chakov, “Methods of solving boundary problems for nonlinear equations with deviating arguments,” Dokl. Akad, Nauk SSSR,214, No. 2, 283–286 (1974).Google Scholar
  7. 7.
    Yu. A. Mitropol'skii and P. F. Fil'chakov, “On the solution of nonlinear differential equations with deviating arguments by means of series,” Dokl. Akad. Nauk SSSR,212, No. 5, 1059–1062 (1973).Google Scholar
  8. 8.
    Yu. A. Mitropol'skii, A. A. Berezovskii, L. P. Nizhnik, and A. N. Kravchenko, “Mathematical methods of investigating certain problems in electrical energetics,” in: Mathematical Knowledge and Research Progress [in Russian], Naukova Dumka, Kiev (1975), pp. 79–91.Google Scholar
  9. 9.
    Yu. A. Mitropol'skii, A. A. Berezovskii, L. P. Nizhnik, and A. N. Kravchenko, “Some results of mathematical research in modern electrodynamic problems of electric energy and their introduction into engineering practice,” in: Mathematics and Research Progress [in Russian], Naukova Dumka, Kiev (1973), pp. 44–57.Google Scholar
  10. 10.
    Yu. A. Mitropol'skii and A. Yu. Luchka (editors), Approximate and Qualitative Methods in the Theory of Differential and Integral Equations [in Russian], Izd. Inst. Mat. Akad. Nauk UkrSSR (1971).Google Scholar
  11. 11.
    N. N. Bogolyubov and Yu. A. Mitropol'skii, Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1974).Google Scholar
  12. 12.
    Yu. A. Mitropol'skii (editor), Nonlinear Boundary Problems of Mathematical physics [in Russian], Izd. Inst. Mat. Akad Nauk UkrSSR, Kiev (1973).Google Scholar
  13. 13.
    O. A. Goroshko et al., Integrodifferential Equations of Dynamics of Bifilar Elevation. Steel Cable [in Russian], Tekhnika, Kiev (1972).Google Scholar
  14. 14.
    O. A. Goroshko and G. N. Savin, Introduction to the Mechanics of Deformable One-Dimensional Bodies of Variable Length [in Russian], Naukova Dumka, Kiev (1971).Google Scholar
  15. 15.
    L. E. Krivoshein, A. Kutanov, K. V. Leung, and M. N. Oguztoreli, “Problèmes á la frontière pour certaines classes d'équations integrodifferentielles non linéaires de Mangeron,” Bul. Inst. Politehn. Iasi (N.S.),20, Nos. 1–2, s. I, 111–115 (1974).Google Scholar
  16. 16.a)
    K. V. Leung, D. Mangeron, M. N. Oguztoreli, and R. B. Stein, “On a class of nonlinear integrodifferential equations. I,” Atti Accad. Naz. Lincei. Rend., Cl. Sci. Fiz., Mat. e Nat. (8)54, 522–528; II (ibid.), 699–705; III Bull. Acad Roy. Sci. Belgique (5),59, 492–499 (1973);Google Scholar
  17. 16.b)
    K. V. Leung, D. Mangeron, M. N. Oguztoreli, and R. B. Stein, “On the stability and numerical solutions of two neural models,” Utilital Mathematica,5, 167–212 (1974).Google Scholar
  18. 16.c)
    K. V. Leung, D. Mangeron, M. N. Oguztoreli, and R. B. Stein, “Improved neural models for studying neural networks,” Kybernetik,15, 1–9 (1974).Google Scholar
  19. 17.
    Yu. A. Mitropol'skii and O. B. Lykova, Integral Manifolds in Nonlinear Mechanics [in Russian], Nauka, Moscow (1973).Google Scholar
  20. 18.
    Yu. A. Mitropol'skii (editor), Proceedings of the Fifth International Conference on Nonlinear Oscillations. Vol. 4: Applications of the Theory of Nonlinear Oscillations in Electrical Engineering and Electronics [in Russian], Izd. Inst. Mat. Akad. Nauk UkrSSR, Kiev (1970).Google Scholar
  21. 19.
    L. E. Krivoshein, D. Mangeron, and M. N. Oguztoreli, “Studi concernenti certe estensioni delle equazioni di Volterra. I, II,” Atti Accad Naz.dei Lincei.Rend., Cl. Sci. Fis., Mat. e Nat. (8),54, 187–192; 860–864 (1973); III,IV,Bull. Soc. Roy. Sci. Liège,43, 9–13; 14–19 (1974).Google Scholar
  22. 20.
    L. E. Krivoshein, D. Mangeron, and M. N. Oguztoreli, “Approximate solution of nonlinear systems with aftereffects,” Buletinul Institutului Politehnic din Iasi,18, Nos. 3–4, 121–125 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • L. E. Krivoshein
    • 1
    • 2
    • 3
  • A. Kutanov
    • 1
    • 2
    • 3
  • D. I. Mangeron
    • 1
    • 2
    • 3
  • M. N. Oguztoreli
    • 1
    • 2
    • 3
  1. 1.Kirghiz State UniversityUSSR
  2. 2.Institute of MathematicsAcademy of Sciences of the Kirghizian SSRUSSR
  3. 3.Iasi Polytechnic InstituteAlbert UniversityUSSR

Personalised recommendations