Skip to main content
Log in

Operator algebras in statistical mechanics and noncommutative probability theory

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

The fundamental notions of statistical mechanics of quantum spin systems are introduced. A survey of the main properties of the states satisfying the Kubo-Martin-Schwinger boundary conditions is given. The problem of describing the invariant states and the first integrals for the multidimensional Heisenberg model is solved. A central limit theorem of noncommutative probability theory and a noncommutative analog of the individual ergodic theorem are formulated and proved. The asymptotics of the distribution of the eigenvalues of the multiparticle Schrodinger operator is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. V. V. Anshelevich, “Uniqueness of the states satisfying the Kubo-Martin-Schwinger boundary conditions in the case of one-dimensional quantum spin systems with finite potential,” Teor. Mat. Fiz.,13, No. 1, 120–130 (1972).

    Google Scholar 

  2. V. V. Anshelevich, “The central limit theorem of noncommutative probability theory,” Dokl. Akad. Nauk SSSR,208, No. 6, 1265–1268 (1973).

    Google Scholar 

  3. V. V. Anshelevich, “Kubo-Martin-Schwinger states and some problems of noncommutative probability theory,” Dissertation, Mathematics-Mechanics Faculty, Moscow State Univ. (1974).

  4. V. V. Anshelevich, “First integrals and stationary states of the quantum spin Heisenberg dynamics,” Teor. Mat. Fiz.,43, No. 1, 107–110 (1980).

    Google Scholar 

  5. O. Bratteli and D. Robinson, Operator Algebras and Quantum Statistical Mechanics, Vol. 1, Springer-Verlag, New York-Heidelberg-Berlin (1979).

    Google Scholar 

  6. I. M. Gel'fand, “On one-parameter groups of operators in a normed space,” Dokl. Akad. Nauk SSSR,25, 711–716 (1939).

    Google Scholar 

  7. B. G. Gol'dshtein, “A central limit theorem for a ‘noncommutative’ stochastic process and its sharpenings,” Izv. Akad. Nauk Uzb. SSR, Ser. Fiz. Mat. Nauk, No. 2, 59–60 (1982).

    Google Scholar 

  8. B. G. Gol'dshtein, “The central limit theorem of noncommutative probability theory,” Teor. Veroyatn. Primen.,27, No. 4, 657–666 (1982).

    Google Scholar 

  9. M. Sh. Gol'dshtein, “On the convergence of mathematical expectation in von Neumann algebras,” Funkts. Anal. Prilozhen.,14, No. 3, 75–76 (1980).

    Google Scholar 

  10. M. Sh. Gol'dshtein, “Theorems of almost-everywhere convergence in von Neumann algebras,” J. Operator Theory,6, 233–311 (1981).

    Google Scholar 

  11. M. Sh. Gol'dshtein, “Ergodic theorems for transformations preserving a weight,” Dokl. Akad. Nauk Uzb. SSR, No. 6, 4–6 (1982).

    Google Scholar 

  12. B, M. Gurevich, Ya. G. Sinai, and Yu. M. Sukhov, “On invariant measures of dynamical systems of one-dimensional statistical mechanics,” Usp. Mat. Nauk,28, No. 5, 45–82 (1973).

    Google Scholar 

  13. E. V. Gusev, “Limit states of the planar Heisenberg dynamics with a transverse magnetic field,” Usp. Mat. Nauk,36, No. 5, 173–174 (1981).

    Google Scholar 

  14. Yu. R. Dashyan, “On a local limit theorem for a class of point random fields, arising in quantum statistical mechanics,” Teor. Veroyatn. Primen.,23, No. 3, 580–593 (1978).

    Google Scholar 

  15. Yu. R. Dashyan, “Equivalence of the canonical and grand canonical Gibbs ensembles for one-dimensional systems of quantum statistical mechanics,” Teor. Mat. Fiz.,34, No. 3, 341–352 (1978).

    Google Scholar 

  16. R. L. Dobrushin, “Gibbs random fields for lattice systems with pairwise interaction,” Funkts. Anal. Prilozhen.,2, No. 4, 31–43 (1968).

    Google Scholar 

  17. R. L. Dobrushin, “The uniqueness problem for Gibbs random fields and the phase transition problem,” Funkts. Anal. Prilozhen.,2, No. 4, 44–57 (1968).

    Google Scholar 

  18. R. L. Dobrushin, “Gibbs fields. The general case,” Funkts. Anal. Prilozhen.,3, No. 1, 27–35 (1969).

    Google Scholar 

  19. J. Ginibre, “Reduced density matrices of quantum gases. The infinite volume limit,” [Russian translation], Matematika,4 104–130 (1968).

    Google Scholar 

  20. I. A. Ibragimov and Tu. V. Linnik, Independent and Stationarily Connected Random Variables [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  21. A. I. Markushevich, Theory of Analytic Functions [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  22. V. V. Petrov, Sums of Independent Random Variables, Academic Press (1975).

  23. M. Reed and B. Simon, Methods of Modern Mathematical Physics. 1. Functional Analysis, Academic Press, New York-London (1972).

    Google Scholar 

  24. D. Ruelle, Statistical Mechanics. Rigorous Results, W. A. Benjamin, New York-Amsterdam (1969).

    Google Scholar 

  25. Ya. G. Sinai, Theory of Phase Transitions [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  26. Ya. G. Sinai and V. V. Anshelevich, “Some problems of noncommutative ergodic theory,” Usp. Mat. Nauk,31, No. 4, 151–167 (1976).

    Google Scholar 

  27. Ya. G. Sinai and Ya. M. Khelemskii, “Description of derivations in algebras of the type of algebras of local observables of spin systems,” Funkts. Anal. Prilozhen.,6, No. 4, 99–100 (1972).

    Google Scholar 

  28. Yu. M. Sukhov, “Limit density matrices for one-dimensional continuous systems of quantum statistical mechanics,” Mat. Sb.,83, 491–512 (1970).

    Google Scholar 

  29. Yu. M. Sukhov, “Regularity of the limit density matrices for one-dimensional continuous quantum systems,” Tr. Mosk. Mat. O-va,26, 151–179 (1972).

    Google Scholar 

  30. Yu. M. Sukhov, “Convergence to the equilibrium state for the one-dimensional quantum system of the model of hard rods,” Izv. Akad. Nauk SSSR. Ser. Mat.,46, No. 6, 1275–1315 (1982).

    Google Scholar 

  31. Yu. M. Sukhov, “Convergence to the equilibrium position in quantum statistical mechanics,” Usp. Mat. Nauk,37, No. 2, 257 (1982).

    Google Scholar 

  32. Yu. M. Sukhov, “Linear boson models of time evolution in quantum statistical mechanics,” Izv. Akad. Nauk SSSR, Ser. Mat.,48, No. 1, 155–191 (1984).

    Google Scholar 

  33. L. A. Takhtadzhyan and L. D. Faddeev, “The quantum method of the inverse problem and the Heisenberg XYZ model,” Usp. Mat. Nauk,34, No. 5, 13–63 (1979).

    Google Scholar 

  34. H. Araki, “Multiple time analyticity of a quantum statistical state satisfying the KMS boundary condition,” Publ. Res. Inst. Mat. Sci.,A4, 361–371 (1968).

    Google Scholar 

  35. H. Araki, “Gibbs states of a one-dimensional quantum lattice,” Commun. Math. Phys.,14, No. 2, 120–157 (1969).

    Google Scholar 

  36. H. Araki, “On the equivalence of the KMS condition and the variational principle for quantum lattice systems,” Commun. Math. Phys.,38, No. 1, 1–10 (1974).

    Google Scholar 

  37. H. Araki, “On uniqueness of KMS states of one-dimensional quantum lattice,” Commun. Math. Phys.,44, No. 1, 1–7 (1975).

    Google Scholar 

  38. H. Araki, “On the XY-model of two-sided infinite chains,” Publ. Res. Inst. Math. Sci.,20, 277–296 (1984).

    Google Scholar 

  39. H. Araki and E. Barouch, “On the dynamics and ergodic properties of the XY-model,” J. Statist. Phys.,31, No. 2, 327–345 (1983).

    Google Scholar 

  40. H. Araki and P. D. F. Ion, “On the equivalence of KMS and Gibbs conditions for states of quantum lattice systems,” Commun. Math. Phys.,35, No, 1, 1–12 (1974).

    Google Scholar 

  41. H. Araki and H. Miyata, “On KMS boundary condition,” Publ. Res. Inst. Math. Sci.,A4, No. 2, 373–385 (1968).

    Google Scholar 

  42. H. Araki and G. L. Sewell, “KMS conditions and local thermodynamic stability of quantum lattice systems,” Commun. Math. Phys.,52, No. 2, 103–109 (1977).

    Google Scholar 

  43. D. Babbit and L. Thomas, “Ground state representation of the infinite one-dimensional Heisenberg ferromagnet, 4. A completely integrable quantum system,” J. Math. Anal. Appl.,72, No. 1, 305–328 (1979).

    Google Scholar 

  44. R. J. Baxter, “One-dimensional anisotropic Heisenberg chain,” Ann. Phys.,70, No. 2, 323–327 (1972).

    Google Scholar 

  45. D. D. Botvich and V. A. Malyshev, “Unitary equivalence of temperature dynamics for ideal and locally perturbed Fermi-gas,” Commun. Math. Phys.,91, No. 3, 301–312 (1983).

    Google Scholar 

  46. H. J. Brascamp, “Equilibrium states for a classical lattice gas,” Commun. Math. Phys.,18, 82–96 (1970).

    Google Scholar 

  47. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Vol. 2, Springer-Verlag, New York-Heidelberg-Berlin (1981).

    Google Scholar 

  48. J. Dixmier, Les Algebres d'Operateurs dans l'Espace Hilbertien, Gauthier-Villars, Paris (1969).

    Google Scholar 

  49. R. L. Dobrushin and S. B. Shlosman, “Absence of breakdown of continuous symmetry in two-dimensional models of statistical physics,” Commun. Math., Phys.,42, No. 1, 31–40 (1975).

    Google Scholar 

  50. J. Frohlich and E. H. Lieb, “Phase transitions in anisotropic lattice spin systems,” Commun. Math. Phys.,60, No. 3, 233–267 (1978).

    Google Scholar 

  51. J. Frohlich and C. Pfister, “On the absence of spontaneous symmetry breaking and of crystalling order in two-dimensional systems,” Commun. Math. Phys.,81, No. 2, 277–298 (1981).

    Google Scholar 

  52. J. Ginibre, “Existence of phase transition for quantum lattice systems,” Commun. Math. Phys.,14, No. 3, 205–234 (1969).

    Google Scholar 

  53. W. Greenberg, “Correlation functionals of infinite volume quantum spin systems,” Commun. Math. Phys.,11, 314–320 (1969).

    Google Scholar 

  54. W. Greenberg, “Critical temperature bounds of quantum lattice gases,” Commun. Math. Phys.,13, 335–344 (1969).

    Google Scholar 

  55. B. M. Gurevich and Ju. M. Suhov, “Stationary solutions of the Bogoliubov hierarchy equations in classical statistical mechanics. 1,” Commun. Math. Phys.,49, No. 1, 63–96 (1976).

    Google Scholar 

  56. B. M. Gurevich and Ju. M. Suhov, “Stationary solutions of the Bogoliubov hierarchy equations in classical statistical mechanics. 2,” Commun. Math. Phys.,54, No. 1, 81–96 (1977).

    Google Scholar 

  57. B. M. Gurevich and Ju. M. Suhov, “Stationary solutions of the Bogoliubov hierarchy equations in classical statistical mechanics. 3,” Commun. Math. Phys.,56, No. 3, 225–236 (1977).

    Google Scholar 

  58. B. M. Gurevich and Ju. M. Suhov, “Stationary solutions of the Bogoliubov hierarchy equations in classical statistical mechanics. 4,” Commun. Math. Phys.,84, 333–376 (1982).

    Google Scholar 

  59. R. Haag, N. M. Hugenholtz, and M. Winnink, “On the equilibrium states in quantum statistical mechanics,” Commun. Math. Phys.,5, 215–236 (1967).

    Google Scholar 

  60. C. Lance, “Ergodic theorems for convex sets and operator algebras,” Invent. Math.,37, 201–214 (1976).

    Google Scholar 

  61. O. E. Lanford, “Quantum spin systems,” in: Cargese Lectures in Physics, Vol. 4, D. Kastler (ed.), Gordon and Breach, New York-London-Paris (1970).

    Google Scholar 

  62. O. E. Lanford and D. W. Robinson, “Statistical mechanics of quantum spin systems,” Commun. Math. Phys.,9, 327–338 (1968).

    Google Scholar 

  63. O. E. Lanford and D. W. Robinson, “Approach to equilibrium of free quantum systems,” Commun. Math. Phys.,24, No. 3, 193–210 (1972).

    Google Scholar 

  64. O. E. Lanford and D. Ruelle, “Integral representations of invariant states on B*-algebras,” J. Math. Phys.,8, 1460–1463 (1967).

    Google Scholar 

  65. O. E. Lanford and D. Ruelle, “Observables at infinity and states with short range correlations in statistical mechanics,” Commun. Math. Phys.,13, No. 3, 194–215 (1969).

    Google Scholar 

  66. E. Lieb, T. Schultz, and D. Mattis, “Two soluble models of an antiferromagnetic chain,” Ann. Phys.,16, 407–466 (1961).

    Google Scholar 

  67. M. Luscher, “Dynamical charges in the quantized renonnalized massive Thirring model,” Nucl. Phys.,B117, No. 2, 475–492 (1976).

    Google Scholar 

  68. N. D. Mermin and H. Wagner, “Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models,” Phys. Rev. Lett.,17, 1133–1136 (1966).

    Google Scholar 

  69. D. Petz, “Ergodic theorems in von Neumann algebras,” Acta Sci. Math (Szeged),46, No. 1-4, 329–343 (1983).

    Google Scholar 

  70. D. Petz, “Quasiuniform ergodic theorems in von Neumann algebras,” Bull. London Math. Soc.,16, No. 2, 151–156 (1984).

    Google Scholar 

  71. R. T. Powers, “Representations of uniformly hyperfinite algebras and their associated von Neumann rings,” Ann. Math.,86, No. 1, 138–171 (1967).

    Google Scholar 

  72. D. W. Robinson, “Statistical mechanics of quantum spin systems. 1,” Commun. Math. Phys.,6, 151–160 (1967).

    Google Scholar 

  73. D. W. Robinson, “Statistical mechanics of quantum spin systems. 2,” Commun. Math. Phys.,7, 337–348 (1968).

    Google Scholar 

  74. D. W. Robinson, “A proof of the existence of phase transitions in the anisotropic Heisenberg model,” Commun. Math. Phys.,14, No. 3, 195–204 (1969).

    Google Scholar 

  75. D. W. Robinson, “Return to equilibrium,” Commun. Math. Phys.,31, No. 3, 171–189 (1973).

    Google Scholar 

  76. D. W. Robinson, “C*-algebras and quantum statistical mechanics,” in: C*-Algebras and their Applications to Statistical Mechanics and Quantum Field Theory, Editrice Compositori, Bologna (1975).

    Google Scholar 

  77. D. Ruelle, “Symmetry breakdown in statistical mechanics,”. in: Cargese Lectures in Physics, Vol. 4, D. Kastler (ed.), Gordon and Breach, New York-London-Paris (1970).

    Google Scholar 

  78. G. L. Sewell, “KMS conditions and local thermodynamic stability of quantum lattice systems. 2,” Commun. Math. Phys.,55, No. 1, 53–61 (1977).

    Google Scholar 

  79. M. Sirugue and M. Winnink, “Constraints imposed upon a state of a system that satisfies the KMS boundary condition,” Commun. Math. Phys.,19, No. 2, 161–168 (1970).

    Google Scholar 

  80. R. F. Streater, “The Heisenberg ferromagnetas a quantum field theory,” Commun. Math. Phys.,6, 233–247 (1967).

    Google Scholar 

  81. M. Takesaki, Theory of Operator Algebras, Vol. 1, Springer-Verlag, Berlin-Heidelberg-New York (1979).

    Google Scholar 

  82. S. Watanabe, “Ergodic theorems for dynamical semigroups on operator algebras,” Hokkaido Math. J.,8, 176–190 (1979).

    Google Scholar 

  83. M. Winnink, “An application of C*-algebras to quantum statistical mechanics,” Thesis, Groningen (1968).

  84. M. Winnink, “Algebraic aspects of the Kubo-Martin-Schwinger condition,” in: Cargese Lectures in Physics, Vol. 4, D. Kastler (ed.), Gordon and Breach, New York-London-Paris (1970).

    Google Scholar 

  85. F. J. Yeadon, “Ergodic theorems for semifinite von Neumann algebras,” J. London Math. Soc.,16, No. 2, 326–332 (1977).

    Google Scholar 

Download references

Authors

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki (Noveishie Dostizheniya), Vol. 27, pp. 191–228, 1985.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anshelevich, V.V., Gol'dshtein, M.S. Operator algebras in statistical mechanics and noncommutative probability theory. J Math Sci 37, 1523–1553 (1987). https://doi.org/10.1007/BF01103857

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01103857

Keywords

Navigation