Advertisement

Ukrainian Mathematical Journal

, Volume 28, Issue 4, pp 431–432 | Cite as

On a linear method of approximation for functions with bounded derivative

  • R. A. Raitsin
Brief Communications
  • 21 Downloads

Keywords

Linear Method Bounded Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature cited

  1. 1.
    J. Favard, “Sur les meilleurs procédés d'approximation de certaines classes de fonctions par des polynômes trigonométriques,” Bull. Sci. Math.,61, 209–224, 243–256 (1937).Google Scholar
  2. 2.
    N. I. Akhiezer and M. G. Krein, “On the best approximation of differentiable periodic functions by trigonometric sums,” Dokl. Akad,. Nauk SSSR,15, 107–112 (1937).Google Scholar
  3. 3.
    V. K. Dzyadyk, “On best approximation in the class of periodic functions with bounded s-th derivative (0 < s < 1),” Izv. Akak. Nauk SSSR, Ser. Mat.,17, No. 2, 135–162 (1953).Google Scholar
  4. 4.
    V. K. Dzyadyk, “On best approximation in the classes of periodic functions defined by kernels which are integrals of absolutely monotone functions,” Izv. Akad. Nauk SSSR, Ser. Mat.,23, No. 6, 933–950 (1959).Google Scholar
  5. 5.
    Sun Yung-shêng, “On the best approximation of differentiable functions by trigonometric polynomials,” Usp. Matem. Nauk,13, No. 2 (80), 238–241 (1958).Google Scholar
  6. 6.
    V. K. Dzyadyk, “On the best approximation in the mean of periodic functions with singularities,” Dokl. Akad. Nauk SSSR,77, No. 6, 949–952 (1951).Google Scholar
  7. 7.
    R. A. Raitsin, “Some applications of S. N. Bernstein's limit theorems in the theory of the best approximation by entire functions,” Proceedings of the All-Union Conference Theory of Functions of Complex Variable [in Russian], Khar'kov (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • R. A. Raitsin
    • 1
  1. 1.Institute of Chemical TechnologyDnepropetrovsk

Personalised recommendations