Skip to main content
Log in

Pathways of ethylene biosynthesis

  • Published:
Qualitas plantarum et materiae vegetabiles Aims and scope Submit manuscript

Abstract

Evidence is presented to show that the linolenic acid-propanal pathway is not operative in apple tissue. A mechanism for the conversion of methionine to ethylene through methional as an intermediate by a model system, consisting of flavin mononucleotide and light, is summarized. The nature of the enzymatic formation of ethylene from either α-keto-γ-methylthiobutyric acid or methional by a Mn-sulfite-phenol-oxygen-peroxidase system is described. Although the conversion of methionine to ethylene in plant tissue has been established, the data fail to support the hypothesis that methionine is converted to ethylene in plant tissues through α-keto-γ-methylthiobutyric acid and methional. Details of the pathway from methionine to ethylene remain to be elucidated.

Resume

Il est montré que l'acide linolénique n'est pas transformé en propanal dans les tissus de pommes. Il est proposé un mecanisme de transformation de la methionine en éthylène par l'intermédiaire du méthional suivant un modèle constitué de flavine mononucléotide et de lumière. La nature de la formation enzymatique de l'éthylène à partir de l'acide α-céto-γ-méthylthiobutyrique ou du méthional par une Mn-sulfite-phénol-oxygène-peroxydase est décrite. Cependant, la conversion de la méthionine en éthylène a été établie dans les tissus végétaux. Les résultats présents ne confirment pas l'hypothèse suivant laquelle la méthionine est convertie en éthylène dans les tissus végétaux par l'intermédiaire de l'acide α-céto-γ-methylthiobutirique et du méthional. Le mécanisme détaillé de la transformation de la méthionine en éthylène reste inconnu.

Zusammenfassung

Es wird gezeigt, dass der Linolensáure-Propanal-Weg im Apfelgewebe nicht aktiv ist. Ein Mechanismus für die Umwandlung von Methionin in Äthylen über Methional als Zwischenstufe läuft in einem Modellsystem unter Beteiligung von Flavinmononucleotid und Licht ab. Die enzymatische Bildung von Äthylen aus α-Keto-γ-methyl-thiobuttersäure oder Methional katalysiert ein Mn2+-So 2−3 -Phenol-O2 -Peroxydase-System. Trotz der nachgewiesenen Umwandlung von Methionin in Äthylen in pflanzlichem Gewebe fehlt der Nachweis, dass Methionin über α-Keto-γ-methylthiobuttersäure und Methional zu Äthylen umgesetzt wird. Die Einzelheiten des Bildungsweges von Äthylen aus Methionin harren noch der Aufklärung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pratt, H. K., & J. D. Goeschl. (1969). Physiological roles of ethylene in plants.Ann. Rev. Plant Physiol. 20:541–584.

    Article  CAS  Google Scholar 

  2. Jansen, E. F. (1965). Ethylene and polyacetylenes. In: Plant Biochemistry, J. Bonner & J. E. Varner, eds. Academic Press, New York, p. 641–64.

    Chapter  Google Scholar 

  3. Lieberman, M. & L. W. Mapson. (1964). Genesis and biogenesis of ethylene.Nature 204:343–45.

    Article  CAS  Google Scholar 

  4. Lieberman, M. & A. T. Kunishi. (1967). Propanal may be a precursor of ethylene in metabolism.Science 158:938.

    Article  CAS  Google Scholar 

  5. Abeles, F. B. (1966). Ethylene production from linolenic acid.Nature 210:23–25.

    Article  CAS  Google Scholar 

  6. Bell, E. R., J. H. Raley, F. F. Rust, F. H. Seubold, & W. E. Vaughan. (1951). Reactions of free radicals associated with low temperature oxidation of paraffins.Discussions Faraday Soc. 10:242–49.

    Article  Google Scholar 

  7. Meigh, D. F., J. D. Jones, & A. C. Hulme. (1967). Production of ethylene and fatty acids in fruit attached to and detached from tree.Phytochemistry 6:1507–15.

    Article  CAS  Google Scholar 

  8. Galliard, T., M. J. C. Rhodes, L. S. C. Wooltorton, & A. C. Hulme. (1968). The development of ethylene biosynthesis during the aging of disks of apple peel.Phytochemistry 7:1465–70.

    Article  CAS  Google Scholar 

  9. Baur, A. & S. F. Yang. (1969). Ethylene production from propanal.Plant Physiol. 44:189–92.

    Article  CAS  Google Scholar 

  10. Piette, L. H., I. Yamazaki, & H. S. Mason. (1961). Identification of substrate free radical intermediates of peroxidase-substrate oxidation by ERP. In: Free Radicals in Biological Systems, M. S. Blois et al., eds. Academic Press, New York. p. 195–208.

    Google Scholar 

  11. Baur, A. & S. F. Yang. (1969). Precursors of ethylene.Plant. Physiol. 44 (in press).

  12. Lieberman, M., A. Kunishi, L. W. Mapson, & D. A. Wardale. (1966). Stimulation of ethylene production in apple tissue slices by methionine.Plant Physiol. 41:376–82.

    Article  CAS  Google Scholar 

  13. Burg, S. P. & C. O. Clagett. (1967). Conversion of methionine to ethylene in vegetative tissue and fruits.Biochem. Biophys. Res. Commun. 27:125–30.

    Article  CAS  Google Scholar 

  14. Meigh, D. F. (1959). Nature of olefines produced by apples.Nature 184:1072–73.

    Article  CAS  Google Scholar 

  15. Lieberman, M., A. T. Kunishi, L. W. Mapson, & D. A. Wardale. (1965). Ethylene production from methionine.Biochem. J. 97:449–59.

    Article  CAS  Google Scholar 

  16. Yang, S. F., H. S. Ku, & H. K. Pratt. (1966). Ethylene production from methionine as mediated by flavin mononucleotide and light.Biochem. Biophys. Res. Comm. 24:739–43.

    Article  CAS  Google Scholar 

  17. Yang, S. F., H. S. Ku, & H. K. Pratt. (1967). Photochemical production of ethylene from methionine and its analogues in the presence of flavin mononucleotide.J. Biol. Chem. 242:5274–80.

    CAS  Google Scholar 

  18. Mapson, L. W., & D. A. Wardale. (1967). Formation of ethylene from methional by a cell-free enzyme system from cauliflower florets.Biochem. J. 102:574–85.

    Article  CAS  Google Scholar 

  19. Ku, H. S., S. F. Yang, & H. K. Pratt. (1967). Enzymic evolution of ethylene from methional by a pea seedling extract.Arch. Biochem. Biophys. 118:756–57.

    Article  CAS  Google Scholar 

  20. Yang, S. F. (1968). Biosynthesis of ethylene. In: Biochemistry and Physiology of Plant Growth Substances (Wightman, F., Setterfield, G., Editors). Runge Press, Ottawa p.1217–1228.

    Google Scholar 

  21. Yang, S. F. (1967). Ethylene formation from methional by horseradish peroxidase.Arch. Biochem. Biophys. 122:481–87.

    Article  CAS  Google Scholar 

  22. Mapson, L. W. & D. A. Wardale. (1968). Biosynthesis of ethylene. Enzyme involved in its formation from methional.Biochem. J. 107:433–42.

    Article  CAS  Google Scholar 

  23. Mapson, L. W. & A. Mead. (1968). Dual nature of cofactors required for the enzymic production of ethylene from methaniol.Biochem. J. 108:575–81.

    Article  Google Scholar 

  24. Yang, S. F. (1969). Further studies on ethylene formation from α-keto-γ-methylthiobutyric acid by peroxidase in the presence of sulfite and oxygen.J. Biol. Chem. 244:4360–65.

    CAS  Google Scholar 

  25. Ku, H. S., S. F. Yang, & H. K. Pratt. (1969). Ethylene evolution from α-keto-γ-methylthiobutyrate by tomato fruit extracts.Phytochemistry 8:567–75.

    Article  CAS  Google Scholar 

  26. Abeles, F. B., & B. Rubinstein. (1964a). Cell-free ethylene evolution from etiolated pea seedlings.Biochim. Biophys. Acta 93:675–77.

    Article  CAS  Google Scholar 

  27. Shimokawa, K. & Z. Kasai. (1967). Ethylene formation from ethyl moiety of ethyonine.Sciences, 156:1362–63.

    Article  CAS  Google Scholar 

  28. Yamazaki, I., H. S. Mason, & L. Piette. (1960). Identification, by electron paramagnetic resonance spectroscopy, of free radicals generated from substrates by peroxidase.J. Biol. Chem. 235:2444–49.

    CAS  Google Scholar 

  29. Yamazaki, I., & L. H. Piette. (1961). Mechanism of free radical formation and disappearance during the ascorbic acid oxidase and peroxidase reactions.Biochim. Biophys. Acta 50:62–69.

    Article  CAS  Google Scholar 

  30. Fridovich, I., & P. Handler. (1961). Detection of free radicals generated during enzymic oxidation by the initiation of sulfite oxidation.J. Biol. Chem. 236:1836–40.

    CAS  Google Scholar 

  31. Cooke, A. R., & D. I. Randall. (1968). 2-Haloethanephosphonic acid as ethylene releasing agents for the induction of flowering in pineapple.Nature 218:974–75.

    Article  CAS  Google Scholar 

  32. Maynard, J. A. & J. M. Swan. (1963). Organophosphorus compounds. I. 2-Chloroalkylphosphonic acid as phosphorylating agents.Aust. J. Chem. 16:596–608.

    Article  CAS  Google Scholar 

  33. Kay, E., L. M. Shannon & J. W. Lew. (1967). Peroxidase isozymes from horse-radish roots.J. Biol. Chem. 242:2470–73.

    CAS  Google Scholar 

  34. Ockerse, R., B. Z. Siegel & A. W. Galston. (1966). Hormone induced repression of a peroxidase isozyme in plant tissue.Science 151:452–53.

    Article  CAS  Google Scholar 

  35. Stahmann, M. A., B. G. Clare & W. Woodbury. (1966). Increased disease resistance and enzyme activity induced by ethylene and ethylene production by black rot infected sweet potato tissue.Plant Physiol. 41:1505–12.

    Article  CAS  Google Scholar 

  36. Ku, H. S. (1968). Ethylene production by subcellular fractions from plant tissues. Doctoral Dissertation, University of California, Davis.

    Google Scholar 

  37. Burg., S. P. & K. V. Thimann. (1959). The physiology of ethylene formation in apple.Proc. Nat. Acad. Sci. U. S. 45:335–44.

    Article  CAS  Google Scholar 

  38. Mahler, H. R. & E. H. Cordes. (1966). Biological Chemistry. Harper and Row Publishers Incorporated, New York, p. 525–53.

    Google Scholar 

  39. Faraday, J. E. & A. S. Freeborn. (1957). Encyclopedia of hydrocarbons. Chemical Publishing Co. Inc., New York, ‘ethylene’ sheet 1 – 45.

    Google Scholar 

  40. Shimokawa, K. & Z. Kasai. (1966). Formation of ethylene from glucose, acetate, pyruvate and acetaldehyde in apple tissue.Plant Cell Physiol. 7:1–9.

    Google Scholar 

  41. Thompson, J. E. & M. Spencer. (1967). Ethylene production from β-alamine by enzyme powder.Canad. J. Biochem. 45:563–71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S.F., Baur, A.H. Pathways of ethylene biosynthesis. Plant Food Hum Nutr 19, 201–220 (1969). https://doi.org/10.1007/BF01101153

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01101153

Keywords

Navigation