Water, Air, and Soil Pollution

, Volume 79, Issue 1–4, pp 89–106 | Cite as

Historical rates of atmospheric Pb deposition using210Pb dated peat cores: Corroboration, computation, and interpretation

  • Melanie A. Vile
  • Martin J. V. Novák
  • Eva BŘízová
  • R. Kelman Wieder
  • William R. Schell
Part I Monitoring


Lead-210 dating of peat cores is one approach that has been used to arrive at historical rates of heavy metal deposition. Despite concerns regarding the validity of210Pb dating due to Pb mobility,210Pb dating can be used if the dates are corroborated with some other independent dating technique. In this study, based on analyses of210Pb dated, pollen corroborated peat cores from two sites in the Czech Republic (Jezerní sla
and BoŽí Dar Bog), we illustrate a previously unexplored problem concerning the computation of metal deposition, using Pb as an example. When peat cores are collected, sectioned into depth intervals,210Pb dated and analyzed for metal contents, the210Pb dates most appropriately correspond to the midpoint depth for each interval, whereas the metal contents correspond to the interval between the top and bottom of each section. Thus the210Pb dates and metal content values throughout the core are offset by half the distance of each depth interval. In calculating historical rates of heavy metal deposition two approaches are available for correcting for the depth interval offsets, the traditional approach of date interpolation and our newly proposed metal content interpolation. We see noa priori reason for choosing one approach over the other, and suggest simultaneous use of both date and metal content interpolation. Additionally, acid-insoluble ash (AIA), which has been proposed as a dating technique in and of itself, may be more useful as an interpretive tool which may provide insights into the nature or sources of atmospherically deposited Pb. For example, plots of Pb content per core section versus AIA content per core section for Jezerní slat, located in a relatively pristine area, reveal increased Pb content without increased AIA contents in depths shallower than 6 cm, indicating deposition of gasoline-derived Pb after its introduction in 1922. Similar plots for BoŽí Dar Bog, located in a polluted industrialized region, indicate greater inputs of Pb than would be predicted from AIA, based on the Jezerní sla
analyses. We interpret the apparent excess Pb deposition at BoŽí Dar Bog as being contributed by soil-derived dust from local metal mining. Elevated rates in Pb deposition at BoŽí Dar Bog are consistent with the history of local mining known to have occurred in the vicinity. Finally, magnetic susceptibility measurements identify combustion of fossil fuels as a source of atmospheric Pb deposition at BoŽí Dar Bog, but not at Jezerní sla


Historical Rate Peat Core Dated Peat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appleby, P. G. and Oldfield, F.: 1978, ‘The Calculation of210Pb Dates Assuming a Constant Rate of Supply of Unsupported210Pb to the Sediment’,Catena 5, 1–8.Google Scholar
  2. Bernard, J. H. and Pouba, A.: 1986,Ore Deposits and Metallurgy of the Czechoslovak Part of the Bohemian Massif, Academia, Prague.Google Scholar
  3. Bradley, J. F. N.: 1971,Czechoslovakia — A Short History, University Press, Edinburgh.Google Scholar
  4. BŘízová, E.: 1993, ‘Reconstruction of Vegetation Succession of the Peat Bog BoŽí Dar Using Pollen Analysis,’ M.S., Geofund, Prague (in Czech).Google Scholar
  5. Busek, V. and Spulber, N.: 1957,Czechoslovakia, East-Central Europe Under the Communists, Atlantic Books, New York.Google Scholar
  6. Clymo, R. S.: 1965, ‘Experiments on Breakdown ofSphagnum in Two Bogs.’J. Ecol. 53, 747–758.Google Scholar
  7. Clymo, R. S. and Hayward, P. M.: 1982, The Ecology ofSphagnum’, in A. J. E. Smith (ed.),Bryophyte Ecology, Chapman and Hall Publishers, London, pp. 229–289.Google Scholar
  8. Clymo, R. S.: 1984, ‘The Limits to Peat Bog Growth’,Phil. Trans. Royal Soc. Lond. B 303, 605–654.Google Scholar
  9. Clymo, R. S.: 1987, ‘Interactions ofSphagnum with Water and Air’, in T. C. Hutchinson and K. M. Meema (eds.),Effects of Atmospheric Pollutants on Forests, Wetlands and Agricultural Ecosystems, Springer-Verlag, Berlin, pp. 513–529.Google Scholar
  10. Clymo, R. S., Oldfield, F., Appleby, P.G., Pearson, G. W., Ratnesar, P. and Richardson, N.: 1990, ‘The Record of Atmospheric Deposition on a Rainwater Dependent Peatland.‘,Phil. Trans. Royal Soc. Lond. B 327, 331–338.Google Scholar
  11. Cole, K. L., Engstrom, D. R., Futyma, R. P. and Stottlemeyer, R.: 1990, ‘Past Atmospheric Deposition of Metals in Northern Indiana Measured in a Peat Core From Cowles Bog’,Environ. Sci. Technol. 24, 543–549.Google Scholar
  12. Damman, A.: 1978, ‘Distribution and Movement of Elements in Ombrotrophic Peat Bogs’,Oikos 30, 480–495.Google Scholar
  13. Erdtman, G.: 1943,An Introduction to Pollen Analysis, Ronald Press, New York.Google Scholar
  14. Erdtman, G.: 1954,An Introduction to Pollen Analysis, Chronica Botanica Co., Waltham, Massachusetts.Google Scholar
  15. Firbas, F.: 1949, SpÄt- und nacheiszeitliche Waldgeschichte Mitteleuropas nördich der Alpen, Allegemeine Waldgeschichte, Jena.Google Scholar
  16. Firbas, F.: 1952, SpÄt- und nacheiszeitliche Waldgeschichte Mitteleuropas nördich der Alpen. Waldgeschichte der einzelnen Landschaften, Jena.Google Scholar
  17. Hermann, A. H.: 1975,A History of The Czechs, Penguin Books Ltd., London.Google Scholar
  18. Hvatum, O. C., BØlviken, B. and Steinnes, E.: 1983, ‘Heavy Metals in Norwegian Ombrotrophic Bogs’,Environ. Biogeochem. 35, 351–356.Google Scholar
  19. Jankovská, V.: 1992, The History of the Krušné hory Forests in the Post-Glacial Times, Lesnické práce,3, 73.Google Scholar
  20. Kratochvíl, J.: 1943,Topographical Mineralogy of Bohemia, Řivnáč, Prague.Google Scholar
  21. Livett, E., Lee, J. A. and Tallis, J. H.: 1979, ‘Lead, Zinc and Copper Analyses of British Blanket Peats’,J. Ecol. 67, 865–891.Google Scholar
  22. Livett, E. A.: 1988, ‘Geochemical Monitoring of Atmospheric Heavy Metal Pollution: Theory and Application’,Adv. Ecol. Res. 18, 65–177.Google Scholar
  23. Madsen, P. P.: 1981, ‘Peat Bog Records of Atmospheric Mercury Deposition’,Nature 293, 127–135.Google Scholar
  24. Moldan, B. and Schnoor, J. L.: 1992, ‘Czechoslovakia-Examining a Critically Ill Environment’,Environ. Sci. Technol. 26, 14–21.Google Scholar
  25. Moldan, B.: 1991,Atmospheric Deposition: A Biogeochemical Process, Academia, Praha.Google Scholar
  26. Norton, S. A.: 1987, ‘The Stratigraphic Record of Atmospheric Loading of Metals at the Ombrotrophic Big Heath Bog, Mt. Desert Island’, in T. C. Hutchinson. and K. M. Meema (eds.),Effects of Atmospheric Pollutants on Forests, Wetlands and Agricultural Ecosystems, Springer-Verlag, Berlin, pp. 561–575.Google Scholar
  27. Norton, S. A. and Kahl, J.: 1987, ‘A Comparison of Lake Sediments and Ombrotrophic Peat Deposits as Long-term Monitors of Atmospheric Pollution’, in T. P. Boyle (ed.),New Approaches to Monitoring Aquatic Ecosystems, ASTM, Philadelphia, pp. 40–57.Google Scholar
  28. Novák, M. J. V. and Wieder, R. K.: 1992, ‘Inorganic and Organic Sulfur Profiles in NineSphagnum Peat Bogs in the United States and Czechoslovakia’,Water, Air, and Soil Pollut. 65, 353–369.Google Scholar
  29. Novák, M. J. V.: 1990, ‘Speciation of Sulfur and Vertical δ34S Profiles in Sphagnum-Dominated Wetlands: Indirect Evidence for Openness of the System Toward Buried Sulfur’, M. S. Thesis, Villanova University, Villanova, Pennsylania.Google Scholar
  30. NoŽička, J.: 1957,The Development of the Czechoslovak Forests in Brief, Prague.Google Scholar
  31. Overbeck, R: 1958, ‘Pollen Analyse Quartarer Bildungen’, in H. Freund (ed.),Handbuch der Mikroakipie in der Technik, Frankfurt am Main.Google Scholar
  32. PylvÄnÄinen, M.: 1993,Manual for Integrated Monitoring, Environmental Data Centre, National Board of Waters and the Environment, Helsinki.Google Scholar
  33. Rapaport, R. A. and Eisenreich, S. J.: 1986, ‘Atmospheric Deposition of Toxaphene to Eastern North America Derived from Peat Accumulation’,Atmos. Environ. 20, 2367–2379.Google Scholar
  34. Rapaport, R. A., Urban, N. R., Capel, P. D., Baker, J. E., Looney, B. B., Eisenreich, S. J. and Gorham, E.: 1985, ‘“New” DDT Inputs to North America: Atmospheric Deposition’,Chemosphere 14, 1167–1173.Google Scholar
  35. Schell, W. R.: 1987, ‘A Historical Perspective of Atmospheric Chemicals Deposited on a Mountain Top Peat Bog in Pennsylvania’,Int. J. Coal Geol. 8, 147–173.Google Scholar
  36. Schell, W. R., Sanchez, A. L. and Gruland, C.: 1986, ‘New Data from Peat Bogs May Give a Historical Perspective on Acid Deposition’,Water, Air, and Soil Pollut. 30, 393–409.Google Scholar
  37. Urban, N. R., Eisenreich, S. J., Grigal, D. F. and Schurr, K. T.: 1990, ‘Mobility and Diagenesis of Pb and210Pb in Peat’,Geochim. Cosmochim. Acta 54, 3329–3346.Google Scholar
  38. Urban, N. R., Eisenreich, S. J. and Grigal, D. F.: 1989, ‘Sulfur Cycling in a ForestedSphagnum Bog in Northern Minnesota’,Biogeochemistry 7, 81–109.Google Scholar
  39. Urban, N. R.: 1983, ‘The Nitrogen Cycle in a Forested Bog Watershed in Northern Minnesota’, M. S. Thesis, Univ. of Minnesota, Minneapolis, Minnesota.Google Scholar
  40. Wieder, R. K., Novák, M. J. V., Schell, W. R. and Rhodes, T.: 1994, ‘Rates of Peat Accumulation over the Past 200 Years in FiveSphagnum-Dominated Peatlands in the United States’,J. Paleolimnol. 11, 1–13.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Melanie A. Vile
    • 1
  • Martin J. V. Novák
    • 2
  • Eva BŘízová
    • 2
  • R. Kelman Wieder
    • 1
  • William R. Schell
    • 3
  1. 1.Department of BiologyVillanova UniversityVillanovaUSA
  2. 2.Czech Geological SurveyPrague 1Czech Republic
  3. 3.Center for Environmental and Occupational Health and ToxicologyUniversity of PittsburghPittsburghUSA

Personalised recommendations