Journal of Atmospheric Chemistry

, Volume 20, Issue 1, pp 17–34 | Cite as

Henry's law coefficients for aqueous solutions of acetone, acetaldehyde and acetonitrile, and equilibrium constants for the addition compounds of acetone and acetaldehyde with bisulfite

  • H. -J. Benkelberg
  • S. Hamm
  • P. Warneck


Vapor phase concentrations of acetone, acetaldehyde and acetonitrile over their aqueous solutions were measured to determine Henry's law partition coefficients for these compounds in the temperature range 5–40 °C. The results are for acetone: ln(H1/atm)=−(5286±100)T+(18.4±0.3); acetaldehyde: ln(H1/atm)=−(5671±22)/T+(20.4±0.1); and acetonitrile: ln(H1/atm)=−(4106±101)/T+(13.8±0.3). Artificial seawater of 3.5% salinity in place of deiionized water raisesH1 by about 15%. A similar technique has been used to measure the equilibrium constants for the addition compounds of acetone and acetaldehyde with bisulfite in aqueous solution. The results are ln(K1/M−1)=(4972±318)/T−(11.2±1.1) and ln(K1/M−1)=(6240±427)/T−(8.1±1.3), respectively. The results are compared and partly combined with other data in the literature to provide an average representation.

Key words

Acetone acetaldehyde acetonitrile gas/aqueous partition coefficients carbonyl-bisulfite addition compounds in-cloud scavenging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arijs, E. and Brasseur, G. (1986), Acetonitrile in the stratosphere and implications for positive ion composition,J. Geophys. Res. 91, 4003–4016.Google Scholar
  2. Bell, R. P. (1966), The reversible hydration of carbonyl compounds,Adv. Phys. Org. Chem. 4, 1–29.Google Scholar
  3. Bell, R. P. and Clunie, J. C. (1952), The hydration of acetaldehyde in aqueous solution,Trans. Faraday Soc. 48, 439–442.Google Scholar
  4. Betterton, E. A. (1991), The partitioning of ketones between the gas and aqueous phases,Atmos. Environ. 25A, 1473–1477.Google Scholar
  5. Betterton, E. A. and Hoffmann, M. R. (1988), Henry's law constants of some environmentally important aldehydes,Environ. Sci. Technol. 22, 1415–1418.Google Scholar
  6. Betterton, E. A., Erel, Y., and Hoffmann, M. R. (1988), Aldehyde-bisulfite adducts: prediction of some of their thermodynamic and kinetic properties,Environ. Sci. Technol. 22, 92–99.Google Scholar
  7. Burnett, M. G. (1963), Determination of partition coefficients at infinite dilution by gas chromatographic analysis of the vapor above dilute solutions,Anal. Chem. 35, 1567–1570.Google Scholar
  8. Buschmann, H.-J., Füldner, H.-H., and Knoche, W. (1980), The reversible hydration of carbonyl compounds in aqueous solution. Part I, the keto/gem-diol equilibrium,Ber. Bunsenges. Phys. Chem. 84, 41–44.Google Scholar
  9. Buttery, R. G., Ling, L. C., and Guadagni, D. G. (1969), Volatilities of aldehydes, ketones and esters in dilute water solutions,Agric. Food Chem. 17, 385–389.Google Scholar
  10. Carlier, P., Hannachi, H., and Mouvier, G. (1986), The chemistry of carbonyl compounds in the atmosphere — a review,Atmos. Environ. 20, 2079–2099.Google Scholar
  11. Deister, U., Neeb, R., Helas, G., and Warneck, P. (1986), Temperature dependence of the equilibrium CH2(OH)2+HSO3 = CH2(OH)SO3 + H2O in aqueous solution,J. Phys. Chem. 90, 3213–3217.Google Scholar
  12. Golding, R. M. (1960), Ultraviolet absorption studies of the bisulphite-pyrosulphite equilibrium,J. Chem. Soc. 1960, 3711–3716.Google Scholar
  13. Hamm, S., Hahn, J., Helas, G., and Warneck, P. (1984), Acetonitrile in the troposphere: Residence time due to rainout and uptake by the ocean,Geophys. Res. Lett. 11, 1207–1210.Google Scholar
  14. Hamm, S. and Warneck, P. (1990), The interhemispheric distribution of acetonitrile in the troposphere,J. Geophys. Res. 95, 20593–20606.Google Scholar
  15. Kanakidou, M., Singh, H. B., Valentin, K. M. and Crutzen, P. J. (1991), A two-dimensional study of ethane and propane oxidation in the troposphere,J. Geophys. Res. 96, 15395–15413.Google Scholar
  16. Kerp, W. (1904), Zur Kenntnis der gebundenen schwefligen Säure,Chem. Zentralbl. 75, 57–59.Google Scholar
  17. Moortgat, G. K. and Warneck, P. (1979), CO and H2 quantum yields in the photodecomposition of formaldehyde,J. Chem. Phys. 70, 3539–3651.Google Scholar
  18. Mopper, K. and Stahovec, W. L. (1986), Sources and sinks of low molecular weight organic carbonyl compounds in seawater,Mar. Chem. 19, 305–321.Google Scholar
  19. Othmer, D. F. and Josefowitz, S. (1947), Composition of vapors from boiling binary solutions,Ind. Eng. Chem. 39, 1175–1117.Google Scholar
  20. Schecker, H. G. and Schulz, G. (1969), Untersuchungen zur Hydratationskinetik von Formaldehyd,Z. Phys. Chem. N.F. 65, 221–224.Google Scholar
  21. Seba, D. B. and Corcoran, E. F. (1969), Surface slicks as concentrators of pesticides in the marine environment,Pesticides Monit. J. 3, 190–193.Google Scholar
  22. Singh, H. B. (1987), Reactive nitrogen in the atmosphere,Environ. Sci. Technol. 21, 320–327.Google Scholar
  23. Singh, H. B. and Hanst, P. L. (1981), Peroxyacetyl nitrate (PAN) in the unpolluted atmosphere: An important reservoir for nitrogen oxides,Geophys. Res. Lett. 8, 941–944.Google Scholar
  24. Snider, J. R. and Dawson, G. A. (1985), Tropospheric light alcohols, carbonyls and acetonitrile: Concentrations in the Southwestern United States and Henry's law data,J. Geophys. Res. 90, 3797–3805.Google Scholar
  25. Vierk, A. L. (1950), Experimentelle Untersuchungen zn Zweistoffsystemen: Wasser-Acetonitril, Wasser-Dioxan, Aethanol-Acetonitril und Cyclohexan-Dioxan,Zeitschr. Anorg. Chemie 261, 283–296.Google Scholar
  26. Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bauley, S. M., Churney, K. L., and Nuttall, R. L. (1982). The NBS tables of chemical thermodynamic properties, selected values for inorganic and C1 and C2 organic substances in SI units,J. Phys. Chem. Ref. Data 11, Suppl. 2, 1–392.Google Scholar
  27. Warneck, P. (1988), Chemistry of the Natural Atmosphere, Academic Press, San Diego.Google Scholar
  28. Warneck, P. (1989), Sulfur dioxide in rain clouds: Gas-liquid scavenging efficiencies and wet deposition rates in the presence of formaldehyde,J. Atm. Chem. 8, 99–117.Google Scholar
  29. Zhou, X. and Mopper, K. (1990), Apparent partition coefficients of 15 carbonyl compounds between air and seawater and between air and freshwater; implications for air-sea exchange,Environ. Sci. Technol. 24, 1864–1869.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • H. -J. Benkelberg
    • 1
  • S. Hamm
    • 1
  • P. Warneck
    • 1
  1. 1.Max-Planck Institut für Chemie (Otto-Hahn-Institut)MainzGermany

Personalised recommendations