Advertisement

Journal of Atmospheric Chemistry

, Volume 20, Issue 1, pp 1–15 | Cite as

Doppler detection of hydroxyl column abundance in the middle atmosphere

  • N. Iwagami
  • S. Inomata
  • I. Murata
  • T. Ogawa
Article

Abstract

The hydroxyl column abundance in the middle atmosphere is measured with ground-based uv spectroscopy using the sun as a light source. The present method is distinctive in that it utilizes the Doppler shift of the solar spectrum due to the solar rotation to discriminate the slight terrestrial hydroxyl absorption from prominent solar features. By comparing the spectra measured on the east and the west edges of the solar disk, it is possible to cancel out most of the solar structures and to make the terrestrial features much more evident.

Key words

Hydroxyl column Doppler shift uv absorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J. G., 1971, Rocket measurement of OH in the mesosphere,J. Geophys. Res. 76, 7820–7824.Google Scholar
  2. Anderson, J. G., 1976, The absolute concentration of OH(X2Π) in the Earth's stratosphere,Geophys. Res. Lett. 3, 165–168.Google Scholar
  3. Burnett, C. R., 1976, Terrestrial OH abundance measurement by spectroscopic observation of resonance absorption of sunlight,Geophys. Res. Lett. 3, 319–322.Google Scholar
  4. Burnett, C. R. and Burnett, E. B., 1981, Spectroscopic measurements of the vertical column abundance of hydroxyl (OH) in the Earth's atmosphere,J. Geophys. Res. 86, 5185–5202.Google Scholar
  5. Burnett, C. R. and Burnett, E. B., 1983, OH Pepsios,Appl. Opt. 22, 2887–2892.Google Scholar
  6. Burnett, C. R., Minschwaner, K. R. and Burnett, E. B., 1988, Vertical column abundance measurements of atmospheric hydroxyl from 26°, 40°, and 65° N,J. Geophys. Res. 93, 5241–5253.Google Scholar
  7. Burnett, E. B., Burnett, C. R. and Minschwaner, K. R., 1989, Periodic behaviors in the observed vertical column abundances of atmospheric hydroxyl,Geophys. Res. Lett. 16, 1285–1288.Google Scholar
  8. Burnett, C. R., Minschwaner, K. R. and Burnett, E. B., 1990, OH vertical column abundance: Tropical measurements,J. Geophys. Res. 95, 16491–16495.Google Scholar
  9. Crutzen, P. J. and Schmailzl, U., 1983, Chemical budgets of the stratosphere,Planet. Space Sci. 31, 1009–1032.Google Scholar
  10. Destombes, J. L., Marliere, C., and Rohart, F., 1977, A unique model for the interpretation of OH vibrational ground-state spectra,J. Mol. Spectrosc. 67, 93–116.Google Scholar
  11. Fabian, P., Pyle, J. A., and Wells, R. J., 1982, Diurnal variations of minor constituents in the stratosphere models as a function of latitude and season,J. Geophys. Res. 87, 4981–5000.Google Scholar
  12. Garcia, R. R. and Solomon, S., 1983, A numerical model of the zonally averaged dynamical and chemical structure of the middle atmosphere,J. Geophys. Res. 88, 1379–1400.Google Scholar
  13. Goldman, A. and Gillis, J. R., 1981, Spectral line parameters for the A2∑-X2Π(0,0) band of OH for atmospheric and high temperatures,J. Quant. Spectrosc. Radiat. Transfer 25, 111–135.Google Scholar
  14. Heaps, W. S. and McGee, T. J., 1983, Balloon borne LIDAR measurements of stratospheric hydroxyl radical,J. Geophys. Res. 88, 5281–5289.Google Scholar
  15. Hofzumahaus, A., Dorn, H.-P., Callies, J., Platt, U., and Ehhalt, D. H., 1991, Tropospheric OH concentration measurements by LASER long-path absorption spectroscopy,Atmospheric Environment 25A, 2017–2022.Google Scholar
  16. Huber, K. P. and Herzberg, G., 1979,Molecular Spectra and Molecular Structure, IV. Constants of Diatomic Molecules, Van Nostrand Reinhold, New York.Google Scholar
  17. Hubler, G., Perner, D., Platt, U., Tonnissen, A., and Ehhalt, D. H., 1984, Groundlevel OH radical concentration: New measurements by optical absorption,J. Geophys. Res. 89, 1309–1319.Google Scholar
  18. Kurucz, R. L., Furenlid, I., Brault, J., and Testerman, L., 1984,Solar Flux Atlas from 296 to 1300 nm, National Solar Observatory Atlas NO. 1, Office of the University Publisher, Harvard University, Cambridge, MA.Google Scholar
  19. McElroy, C. T. and Wardle, D. I., 1978, The detection of OH and CIO in uv spectra of the sky and sun measured by a balloon-borne high resolution spectrometer, WMO Symposium on the Geophysical Aspects and Consequences of Changes in the Composition of the Stratosphere, Toronto, June 1978, 85–89.Google Scholar
  20. Morgan, M. F., Torr, D. G., and Torr, M. R., 1993, Preliminary measurements of mesospheric OH X2Π by ISO on ATLAS1,Geophys. Res. Lett. 20, 511–514.Google Scholar
  21. Mount, G. H., 1992, The measurement of tropospheric OH by long path absorption 1. Instrumentation,J. Geophys. Res. 97, 2427–2444.Google Scholar
  22. Park, J. H. and Carli, B., 1991, Spectroscopic measurement of HO2, H2O2, and OH in the stratosphere,J. Geophys. Res. 96, 22535–22541.Google Scholar
  23. Torr, D. G., Torr, M. R., Swift, W., Fennelly, J., and Liu, G., 1987, Measurements of OH (X2∑) in the stratosphere by high resolution uv spectroscopy,Geophys. Res. Lett. 14, 937–940.Google Scholar
  24. Stimpfle, R. M. and Anderson, J. G., 1988, In-situ detection of OH in the lower stratosphere with a balloon borne high repetition rate LASER system,Geophys. Res. Lett. 15, 1503–1506.Google Scholar
  25. Stimpfle, R. M., Wennberg, P. O., Lapson, L. B., and Anderson, J. G., 1990, Simultaneous in situ measurements of OH and HO2 in the stratosphere,Geophys. Res. Lett. 17, 1905–1908.Google Scholar
  26. WMO, 1986, Atmospheric Ozone 1985, WMO Global Ozone Research and Monitoring Project - Report No. 16, World Meteorological Organization, Geneva.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • N. Iwagami
    • 1
  • S. Inomata
    • 1
  • I. Murata
    • 1
  • T. Ogawa
    • 1
  1. 1.Department of Earth and Planetary PhysicsUniversity of TokyoBunkyo-ku TokyoJapan

Personalised recommendations